Skip to main content

Tethered Function Assays as Tools to Elucidate the Molecular Roles of RNA-Binding Proteins

  • Chapter
  • First Online:
RNA Processing

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 907))

Abstract

Dynamic regulation of RNA molecules is critical to the survival and development of cells. Messenger RNAs are transcribed in the nucleus as intron-containing pre-mRNAs and bound by RNA-binding proteins, which control their fate by regulating RNA stability, splicing, polyadenylation, translation, and cellular localization. Most RBPs have distinct mRNA-binding and functional domains; thus, the function of an RBP can be studied independently of RNA-binding by artificially recruiting the RBP to a reporter RNA and then measuring the effect of RBP recruitment on reporter splicing, stability, translational efficiency, or intracellular trafficking. These tethered function assays therefore do not require prior knowledge of the RBP’s endogenous RNA targets or its binding sites within these RNAs. Here, we provide an overview of the experimental strategy and the strengths and limitations of common tethering systems. We illustrate specific examples of the application of the assay in elucidating the function of various classes of RBPs. We also discuss how classic tethering assay approaches and insights gained from them have been empowered by more recent technological advances, including efficient genome editing and high-throughput RNA-sequencing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coller JM, Gray NK, Wickens MP (1998) mRNA stabilization by poly(A) binding protein is independent of poly(A) and requires translation. Genes Dev 12(20):3226–3235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Coller J, Wickens M (2002) Tethered function assays using 3′ untranslated regions. Methods 26(2):142–150

    Article  CAS  PubMed  Google Scholar 

  3. Coller J, Wickens M (2007) Tethered function assays: an adaptable approach to study RNA regulatory proteins. Methods Enzymol 429:299–321

    Article  CAS  PubMed  Google Scholar 

  4. Clement SL, Lykke-Andersen J (2008) A tethering approach to study proteins that activate mRNA turnover in human cells. Methods Mol Biol 419:121–133

    Article  CAS  PubMed  Google Scholar 

  5. Baron-Benhamou J, Gehring NH, Kulozik AE, Hentze MW (2004) Using the lambda N peptide to tether proteins to RNAs. Methods Mol Biol 257:135–154

    CAS  PubMed  Google Scholar 

  6. Stubbs SH, Hunter OV, Hoover A, Conrad NK (2012) Viral factors reveal a role for REF/Aly in nuclear RNA stability. Mol Cell Biol 32(7):1260–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Graveley BR, Maniatis T (1998) Arginine/serine-rich domains of SR proteins can function as activators of pre-mRNA splicing. Mol Cell 1(5):765–771

    Article  CAS  PubMed  Google Scholar 

  8. Lim C et al (2011) The novel gene twenty-four defines a critical translational step in the Drosophila clock. Nature 470(7334):399–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lionnet T et al (2011) A transgenic mouse for in vivo detection of endogenous labeled mRNA. Nat Methods 8(2):165–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kim YK, Furic L, Desgroseillers L, Maquat LE (2005) Mammalian Staufen1 recruits Upf1 to specific mRNA 3′ UTRs so as to elicit mRNA decay. Cell 120(2):195–208

    Article  CAS  PubMed  Google Scholar 

  11. Dugre-Brisson S et al (2005) Interaction of Staufen1 with the 5′ end of mRNA facilitates translation of these RNAs. Nucleic Acids Res 33(15):4797–4812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ricci EP et al (2014) Staufen1 senses overall transcript secondary structure to regulate translation. Nat Struct Mol Biol 21(1):26–35

    Article  CAS  PubMed  Google Scholar 

  13. Kim J et al (2014) Splicing factor SRSF3 represses the translation of programmed cell death 4 mRNA by associating with the 5′-UTR region. Cell Death Differ 21(3):481–490

    Article  CAS  PubMed  Google Scholar 

  14. Stripecke R, Oliveira CC, McCarthy JE, Hentze MW (1994) Proteins binding to 5′ untranslated region sites: a general mechanism for translational regulation of mRNAs in human and yeast cells. Mol Cell Biol 14(9):5898–5909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. De Gregorio E, Baron J, Preiss T, Hentze MW (2001) Tethered-function analysis reveals that elF4E can recruit ribosomes independent of its binding to the cap structure. RNA 7(1):106–113

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bardwell VJ, Wickens M (1990) Purification of RNA and RNA-protein complexes by an R17 coat protein affinity method. Nucleic Acids Res 18(22):6587–6594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pillai RS, Artus CG, Filipowicz W (2004) Tethering of human Ago proteins to mRNA mimics the miRNA-mediated repression of protein synthesis. RNA 10(10):1518–1525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lykke-Andersen J, Shu MD, Steitz JA (2000) Human Upf proteins target an mRNA for nonsense-mediated decay when bound downstream of a termination codon. Cell 103(7):1121–1131

    Article  CAS  PubMed  Google Scholar 

  19. Gehring NH, Neu-Yilik G, Schell T, Hentze MW, Kulozik AE (2003) Y14 and hUpf3b form an NMD-activating complex. Mol Cell 11(4):939–949

    Article  CAS  PubMed  Google Scholar 

  20. Barreau C, Watrin T, Beverley Osborne H, Paillard L (2006) Protein expression is increased by a class III AU-rich element and tethered CUG-BP1. Biochem Biophys Res Commun 347(3):723–730

    Article  CAS  PubMed  Google Scholar 

  21. Collier B, Gorgoni B, Loveridge C, Cooke HJ, Gray NK (2005) The DAZL family proteins are PABP-binding proteins that regulate translation in germ cells. EMBO J 24(14):2656–2666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gorgoni B et al (2005) The stem-loop binding protein stimulates histone translation at an early step in the initiation pathway. RNA 11(7):1030–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Williamson JR (2000) Induced fit in RNA-protein recognition. Nat Struct Biol 7(10):834–837

    Article  CAS  PubMed  Google Scholar 

  24. Frankel AD, Smith CA (1998) Induced folding in RNA-protein recognition: more than a simple molecular handshake. Cell 92(2):149–151

    Article  CAS  PubMed  Google Scholar 

  25. Grskovic M, Hentze MW, Gebauer F (2003) A co-repressor assembly nucleated by Sex-lethal in the 3′ UTR mediates translational control of Drosophila msl-2 mRNA. EMBO J 22(20):5571–5581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sanford JR et al (2009) Splicing factor SFRS1 recognizes a functionally diverse landscape of RNA transcripts. Genome Res 19(3):381–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ule J et al (2003) CLIP identifies Nova-regulated RNA networks in the brain. Science 302(5648):1212–1215

    Article  CAS  PubMed  Google Scholar 

  28. Johansson HE et al (1998) A thermodynamic analysis of the sequence-specific binding of RNA by bacteriophage MS2 coat protein. Proc Natl Acad Sci U S A 95(16):9244–9249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tan R, Frankel AD (1995) Structural variety of arginine-rich RNA-binding peptides. Proc Natl Acad Sci U S A 92(12):5282–5286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lim F, Peabody DS (2002) RNA recognition site of PP7 coat protein. Nucleic Acids Res 30(19):4138–4144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Weeks KM, Ampe C, Schultz SC, Steitz TA, Crothers DM (1990) Fragments of the HIV-1 Tat protein specifically bind TAR RNA. Science 249(4974):1281–1285

    Article  CAS  PubMed  Google Scholar 

  32. Goforth JB, Anderson SA, Nizzi CP, Eisenstein RS (2010) Multiple determinants within iron-responsive elements dictate iron regulatory protein binding and regulatory hierarchy. RNA 16(1):154–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Katsamba PS, Myszka DG, Laird-Offringa IA (2001) Two functionally distinct steps mediate high affinity binding of U1A protein to U1 hairpin II RNA. J Biol Chem 276(24):21476–21481

    Article  CAS  PubMed  Google Scholar 

  34. Witherell GW, Uhlenbeck OC (1989) Specific RNA-binding by Q beta coat protein. Biochemistry 28(1):71–76

    Article  CAS  PubMed  Google Scholar 

  35. Gott JM, Wilhelm LJ, Uhlenbeck OC (1991) RNA-binding properties of the coat protein from bacteriophage GA. Nucleic Acids Res 19(23):6499–6503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Carey J, Lowary PT, Uhlenbeck OC (1983) Interaction of R17 coat protein with synthetic variants of its ribonucleic acid binding site. Biochemistry 22(20):4723–4730

    Article  CAS  PubMed  Google Scholar 

  37. Lowary PT, Uhlenbeck OC (1987) An RNA mutation that increases the affinity of an RNA-protein interaction. Nucleic Acids Res 15(24):10483–10493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Romaniuk PJ, Lowary P, Wu HN, Stormo G, Uhlenbeck OC (1987) RNA-binding site of R17 coat protein. Biochemistry 26(6):1563–1568

    Article  CAS  PubMed  Google Scholar 

  39. Wu HN, Kastelic KA, Uhlenbeck OC (1988) A comparison of two phage coat protein-RNA interactions. Nucleic Acids Res 16(11):5055–5066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Carey J, Cameron V, de Haseth PL, Uhlenbeck OC (1983) Sequence-specific interaction of R17 coat protein with its ribonucleic acid binding site. Biochemistry 22(11):2601–2610

    Article  CAS  PubMed  Google Scholar 

  41. Carey J, Uhlenbeck OC (1983) Kinetic and thermodynamic characterization of the R17 coat protein-ribonucleic acid interaction. Biochemistry 22(11):2610–2615

    Article  CAS  PubMed  Google Scholar 

  42. Lim F, Peabody DS (1994) Mutations that increase the affinity of a translational repressor for RNA. Nucleic Acids Res 22(18):3748–3752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Witherell GW, Wu HN, Uhlenbeck OC (1990) Cooperative binding of R17 coat protein to RNA. Biochemistry 29(50):11051–11057

    Article  CAS  PubMed  Google Scholar 

  44. Beck M et al (2011) The quantitative proteome of a human cell line. Mol Syst Biol 7:549

    Article  PubMed  PubMed Central  Google Scholar 

  45. Peabody DS, Ely KR (1992) Control of translational repression by protein-protein interactions. Nucleic Acids Res 20(7):1649–1655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. LeCuyer KA, Behlen LS, Uhlenbeck OC (1995) Mutants of the bacteriophage MS2 coat protein that alter its cooperative binding to RNA. Biochemistry 34(33):10600–10606

    Article  CAS  PubMed  Google Scholar 

  47. Peabody DS, Al-Bitar L (2001) Isolation of viral coat protein mutants with altered assembly and aggregation properties. Nucleic Acids Res 29(22), E113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lazinski D, Grzadzielska E, Das A (1989) Sequence-specific recognition of RNA hairpins by bacteriophage antiterminators requires a conserved arginine-rich motif. Cell 59(1):207–218

    Article  CAS  PubMed  Google Scholar 

  49. De Gregorio E, Preiss T, Hentze MW (1999) Translation driven by an eIF4G core domain in vivo. EMBO J 18(17):4865–4874

    Article  PubMed  PubMed Central  Google Scholar 

  50. Austin RJ, Xia T, Ren J, Takahashi TT, Roberts RW (2002) Designed arginine-rich RNA-binding peptides with picomolar affinity. J Am Chem Soc 124(37):10966–10967

    Article  CAS  PubMed  Google Scholar 

  51. Van Gilst MR, Rees WA, Das A, von Hippel PH (1997) Complexes of N antitermination protein of phage lambda with specific and nonspecific RNA target sites on the nascent transcript. Biochemistry 36(6):1514–1524

    Article  PubMed  Google Scholar 

  52. Van Gilst M, Rees WA, von Hippel PH (1995) Structural and thermodynamic characteristics of the binding of the lambda N protein to a RNA hairpin. Nucleic Acids Symp Ser 33:145–147

    PubMed  Google Scholar 

  53. Lim F, Downey TP, Peabody DS (2001) Translational repression and specific RNA-binding by the coat protein of the Pseudomonas phage PP7. J Biol Chem 276(25):22507–22513

    Article  CAS  PubMed  Google Scholar 

  54. Carroll JS, Munchel SE, Weis K (2011) The DExD/H box ATPase Dhh1 functions in translational repression, mRNA decay, and processing body dynamics. J Cell Biol 194(4):527–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hocine S, Raymond P, Zenklusen D, Chao JA, Singer RH (2013) Single-molecule analysis of gene expression using two-color RNA labeling in live yeast. Nat Methods 10(2):119–121

    Article  CAS  PubMed  Google Scholar 

  56. Wu B, Chen J, Singer RH (2014) Background free imaging of single mRNAs in live cells using split fluorescent proteins. Sci Rep 4:3615

    PubMed  PubMed Central  Google Scholar 

  57. Ponka P (1997) Tissue-specific regulation of iron metabolism and heme synthesis: distinct control mechanisms in erythroid cells. Blood 89(1):1–25

    CAS  PubMed  Google Scholar 

  58. Thomson AM, Rogers JT, Leedman PJ (1999) Iron-regulatory proteins, iron-responsive elements and ferritin mRNA translation. Int J Biochem Cell Biol 31(10):1139–1152

    Article  CAS  PubMed  Google Scholar 

  59. Hentze MW, Kuhn LC (1996) Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc Natl Acad Sci U S A 93(16):8175–8182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pantopoulos K (2004) Iron metabolism and the IRE/IRP regulatory system: an update. Ann N Y Acad Sci 1012:1–13

    Article  CAS  PubMed  Google Scholar 

  61. Valegard K, Murray JB, Stockley PG, Stonehouse NJ, Liljas L (1994) Crystal structure of an RNA bacteriophage coat protein-operator complex. Nature 371(6498):623–626

    Article  CAS  PubMed  Google Scholar 

  62. Rumnieks J, Tars K (2014) Crystal structure of the bacteriophage Qbeta coat protein in complex with the RNA operator of the replicase gene. J Mol Biol 426(5):1039–1049

    Article  CAS  PubMed  Google Scholar 

  63. Tars K, Bundule M, Fridborg K, Liljas L (1997) The crystal structure of bacteriophage GA and a comparison of bacteriophages belonging to the major groups of Escherichia coli leviviruses. J Mol Biol 271(5):759–773

    Article  CAS  PubMed  Google Scholar 

  64. Lim F, Spingola M, Peabody DS (1996) The RNA-binding site of bacteriophage Qbeta coat protein. J Biol Chem 271(50):31839–31845

    Article  CAS  PubMed  Google Scholar 

  65. Ni CZ et al (1996) Crystal structure of the coat protein from the GA bacteriophage: model of the unassembled dimer. Protein Sci 5(12):2485–2493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chen L, Frankel AD (1994) An RNA-binding peptide from bovine immunodeficiency virus Tat protein recognizes an unusual RNA structure. Biochemistry 33(9):2708–2715

    Article  CAS  PubMed  Google Scholar 

  67. Wakiyama M, Kaitsu Y, Muramatsu R, Takimoto K, Yokoyama S (2012) Tethering of proteins to RNAs using the bovine immunodeficiency virus-Tat peptide and BIV-TAR RNA. Anal Biochem 427(2):130–132

    Article  CAS  PubMed  Google Scholar 

  68. Tsai DE, Harper DS, Keene JD (1991) U1-snRNP-A protein selects a ten nucleotide consensus sequence from a degenerate RNA pool presented in various structural contexts. Nucleic Acids Res 19(18):4931–4936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tang J, Rosbash M (1996) Characterization of yeast U1 snRNP A protein: identification of the N-terminal RNA-binding domain (RBD) binding site and evidence that the C-terminal RBD functions in splicing. RNA 2(10):1058–1070

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Brodsky AS, Silver PA (2000) Pre-mRNA processing factors are required for nuclear export. RNA 6(12):1737–1749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Takizawa PA, Vale RD (2000) The myosin motor, Myo4p, binds Ash1 mRNA via the adapter protein, She3p. Proc Natl Acad Sci U S A 97(10):5273–5278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Finoux AL, Seraphin B (2006) In vivo targeting of the yeast Pop2 deadenylase subunit to reporter transcripts induces their rapid degradation and generates new decay intermediates. J Biol Chem 281(36):25940–25947

    Article  CAS  PubMed  Google Scholar 

  73. van Gelder CW et al (1993) A complex secondary structure in U1A pre-mRNA that binds two molecules of U1A protein is required for regulation of polyadenylation. EMBO J 12(13):5191–5200

    PubMed  PubMed Central  Google Scholar 

  74. Sonenberg N, Hinnebusch AG (2009) Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136(4):731–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Le Hir H, Izaurralde E, Maquat LE, Moore MJ (2000) The spliceosome deposits multiple proteins 20–24 nucleotides upstream of mRNA exon-exon junctions. EMBO J 19(24):6860–6869

    Article  PubMed  PubMed Central  Google Scholar 

  76. Le Hir H, Moore MJ, Maquat LE (2000) Pre-mRNA splicing alters mRNP composition: evidence for stable association of proteins at exon-exon junctions. Genes Dev 14(9):1098–1108

    PubMed  PubMed Central  Google Scholar 

  77. Singh G, Lykke-Andersen J (2003) New insights into the formation of active nonsense-mediated decay complexes. Trends Biochem Sci 28(9):464–466

    Article  CAS  PubMed  Google Scholar 

  78. Leeds P, Wood JM, Lee BS, Culbertson MR (1992) Gene products that promote mRNA turnover in Saccharomyces cerevisiae. Mol Cell Biol 12(5):2165–2177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lykke-Andersen J, Shu MD, Steitz JA (2001) Communication of the position of exon-exon junctions to the mRNA surveillance machinery by the protein RNPS1. Science 293(5536):1836–1839

    Article  CAS  PubMed  Google Scholar 

  80. Fatscher T, Boehm V, Gehring NH (2015) Mechanism, factors, and physiological role of nonsense-mediated mRNA decay. Cell Mol Life Sci 72(23):4523–4544

    Article  CAS  PubMed  Google Scholar 

  81. Wang X et al (2014) N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505(7481):117–120

    Article  PubMed  CAS  Google Scholar 

  82. Carmell MA, Xuan Z, Zhang MQ, Hannon GJ (2002) The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev 16(21):2733–2742

    Article  CAS  PubMed  Google Scholar 

  83. Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431(7006):343–349

    Article  CAS  PubMed  Google Scholar 

  84. Behm-Ansmant I et al (2006) mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev 20(14):1885–1898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rehwinkel J, Behm-Ansmant I, Gatfield D, & Izaurralde E (2005) A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing. RNA (New York, N.Y.) 11(11):1640–1647.

    Google Scholar 

  86. Lim C, Allada R (2013) ATAXIN-2 activates PERIOD translation to sustain circadian rhythms in Drosophila. Science 340(6134):875–879

    Article  CAS  PubMed  Google Scholar 

  87. Tacke R, Manley JL (1995) The human splicing factors ASF/SF2 and SC35 possess distinct, functionally significant RNA-binding specificities. EMBO J 14(14):3540–3551

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Shi H, Hoffman BE, Lis JT (1997) A specific RNA hairpin loop structure binds the RNA recognition motifs of the Drosophila SR protein B52. Mol Cell Biol 17(5):2649–2657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Fu XD (1995) The superfamily of arginine/serine-rich splicing factors. RNA 1(7):663–680

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Manley JL, Tacke R (1996) SR proteins and splicing control. Genes Dev 10(13):1569–1579

    Article  CAS  PubMed  Google Scholar 

  91. Caceres JF, Krainer AR (1993) Functional analysis of pre-mRNA splicing factor SF2/ASF structural domains. EMBO J 12(12):4715–4726

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Zuo P, Manley JL (1993) Functional domains of the human splicing factor ASF/SF2. EMBO J 12(12):4727–4737

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Wang J, Takagaki Y, Manley JL (1996) Targeted disruption of an essential vertebrate gene: ASF/SF2 is required for cell viability. Genes Dev 10(20):2588–2599

    Article  CAS  PubMed  Google Scholar 

  94. Tacke R, Chen Y, Manley JL (1997) Sequence-specific RNA-binding by an SR protein requires RS domain phosphorylation: creation of an SRp40-specific splicing enhancer. Proc Natl Acad Sci U S A 94(4):1148–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chandler DS, Qi J, Mattox W (2003) Direct repression of splicing by transformer-2. Mol Cell Biol 23(15):5174–5185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Shen M, Mattox W (2012) Activation and repression functions of an SR splicing regulator depend on exonic versus intronic-binding position. Nucleic Acids Res 40(1):428–437

    Article  CAS  PubMed  Google Scholar 

  97. Sun S, Zhang Z, Fregoso O, Krainer AR (2012) Mechanisms of activation and repression by the alternative splicing factors RBFOX1/2. RNA 18(2):274–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhang C et al (2008) Defining the regulatory network of the tissue-specific splicing factors Fox-1 and Fox-2. Genes Dev 22(18):2550–2563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yeo GW et al (2009) An RNA code for the FOX2 splicing regulator revealed by mapping RNA-protein interactions in stem cells. Nat Struct Mol Biol 16(2):130–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Jansen RP, Dowzer C, Michaelis C, Galova M, Nasmyth K (1996) Mother cell-specific HO expression in budding yeast depends on the unconventional myosin myo4p and other cytoplasmic proteins. Cell 84(5):687–697

    Article  CAS  PubMed  Google Scholar 

  101. Bobola N, Jansen RP, Shin TH, Nasmyth K (1996) Asymmetric accumulation of Ash1p in postanaphase nuclei depends on a myosin and restricts yeast mating-type switching to mother cells. Cell 84(5):699–709

    Article  CAS  PubMed  Google Scholar 

  102. Long RM, Gu W, Lorimer E, Singer RH, Chartrand P (2000) She2p is a novel RNA-binding protein that recruits the Myo4p-She3p complex to ASH1 mRNA. EMBO J 19(23):6592–6601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bertrand E et al (1998) Localization of ASH1 mRNA particles in living yeast. Mol Cell 2(4):437–445

    Article  CAS  PubMed  Google Scholar 

  104. Mor A et al (2010) Dynamics of single mRNP nucleocytoplasmic transport and export through the nuclear pore in living cells. Nat Cell Biol 12(6):543–552

    Article  CAS  PubMed  Google Scholar 

  105. Nott A, Le Hir H, Moore MJ (2004) Splicing enhances translation in mammalian cells: an additional function of the exon junction complex. Genes Dev 18(2):210–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Buxbaum AR, Haimovich G, Singer RH (2015) In the right place at the right time: visualizing and understanding mRNA localization. Nat Rev Mol Cell Biol 16(2):95–109

    Article  CAS  PubMed  Google Scholar 

  107. Mao YS, Zhang B, Spector DL (2011) Biogenesis and function of nuclear bodies. Trends Genet 27(8):295–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Engreitz J, Lander ES, Guttman M (2015) RNA antisense purification (RAP) for mapping RNA interactions with chromatin. Methods Mol Biol 1262:183–197

    Article  CAS  PubMed  Google Scholar 

  109. Engreitz JM et al (2014) RNA-RNA interactions enable specific targeting of noncoding RNAs to nascent Pre-mRNAs and chromatin sites. Cell 159(1):188–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Gerstberger S, Hafner M, Ascano M, Tuschl T (2014) Evolutionary conservation and expression of human RNA-binding proteins and their role in human genetic disease. Adv Exp Med Biol 825:1–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank members of the Yeo laboratory for critical reading of the manuscript. This work was partially supported by grants from the National Institutes of Health (HG007005, HG004659 and NS075449) to G.W.Y. G.W.Y. is an Alfred P. Sloan Research Fellow. J.K.N. was supported by the NCI training grant T32CA067754. T.J.B. is a Hoover Brussels Fellow of the Belgian American Education Foundation (BAEF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gene W. Yeo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bos, T.J., Nussbacher, J.K., Aigner, S., Yeo, G.W. (2016). Tethered Function Assays as Tools to Elucidate the Molecular Roles of RNA-Binding Proteins. In: Yeo, G. (eds) RNA Processing. Advances in Experimental Medicine and Biology, vol 907. Springer, Cham. https://doi.org/10.1007/978-3-319-29073-7_3

Download citation

Publish with us

Policies and ethics