Skip to main content

Detection of Lipid Peroxidation-Derived Free Azelaic Acid, a Biotic Stress Marker and Other Dicarboxylic Acids in Tobacco by Reversed-Phase HPLC-MS Under Non-derivatized Conditions

  • Protocol
  • First Online:
Reactive Oxygen Species in Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2526))

Abstract

Azelaic acid (AzA, 1,9-nonadienoic acid) is a nine-carbon chain (C9) dicarboxylic acid with multiple and diverse functions in humans and plants. In plants this compound was suggested as a marker for lipid peroxidation under biotic and abiotic stress conditions and an inducer (priming agent) of plant immunity (acquired resistance). Detection methods for AzA in plants include a wide range of methodological approaches. This new and simple reversed-phase HPLC-MS protocol describes the measurement of AzA and other dicarboxylic acids either from tobacco leaf tissue or petiolar exudates (vascular sap) of plants under non-derivatized conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schulte BC, Wu W, Rosen T (2015) Azelaic acid: evidence-based update on mechanism of action and clinical application. J Drugs Dermatol 14(9):964–968

    CAS  PubMed  Google Scholar 

  2. Micheletti G, Calonghi N, Farruggia G, Strocchi E, Palmacci V, Telese D, Bordoni S, Frisco G, Boga C (2020) Synthesis of novel structural hybrids between Aza-heterocycles and azelaic acid moiety with a specific activity on osteosarcoma cells. Molecules 25(2):E404. https://doi.org/10.3390/molecules25020404

    Article  CAS  PubMed  Google Scholar 

  3. Dongdong Z, Jin Y, Yang T, Yang Q, Wu B, Chen Y, Luo Z, Liang L, Liu Y, Xu A, Tong X, Can C, Ding L, Tu H, Tan Y, Jiang H, Liu X, Shen H, Liu L, Pan Y, Wei Y, Zhou F (2019) Antiproliferative and immunoregulatory effects of azelaic acid against acute myeloid leukemia via the activation of Notch signaling pathway. Front Pharmacol 10:1396. https://doi.org/10.3389/fphar.2019.01396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zoeller M, Stingl N, Krischke M, Fekete A, Waller F, Berger S, Mueller MJ (2012) Lipid profiling of the Arabidopsis hypersensitive response reveals specific lipid peroxidation and fragmentation processes: biogenesis of pimelic and azelaic acid. Plant Physiol 160:365–378 https://doi.org/10.1104/pp.112.202846

  5. Jung HW, Tschaplinski TJ, Wang L, Glazebrook J, Greenberg JT (2009) Priming in systemic plant immunity. Science 324:89–91 https://doi.org/10.1126/science.1170025

  6. Yu K, Soares JM, Mandal MK, Wang C, Chanda B, Gifford AN, Fowler JS, Navarre D, Kachroo A, Kachroo P (2013) A feedback regulatory loop between G3P and lipid transfer proteins DIR1 and AZI1 mediates azelaic acid-induced systemic immunity. Cell Rep 3:1266–1276 https://doi.org/10.1016/j.celrep.2013.03.030

  7. Wittek F, Hoffmann T, Kanawati B, Bichlmeier M, Knappe C, Wenig M, Schmitt-Kopplin P, Parker JE, Schwab W, Vlot AC (2014) Arabidopsis ENHANCED DISEASE SUSCEPTIBILITY1 promotes systemic acquired resistance via azelaic acid and its precursor 9-oxo nonanoic acid. J Exp Bot 65:5919–5931 https://doi.org/10.1093/jxb/eru331

  8. Vicente J, Cascón T, Vicedo B, García-Agustín P, Hamberg M, Castresana C (2012) Role of 9-lipoxygenase and α-dioxygenase oxylipin pathways as modulators of local and systemic defense. Mol Plant 5:914–928 https://doi.org/10.1093/mp/ssr105

  9. Návarová H, Bernsdorff F, Döring A-C, Zeier J (2012) Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity. Plant Cell 24:5123–5141 https://doi.org/10.1105/tpc.112.103564

  10. Nagy ZÁ, Kátay G, Gullner G, Király L, Ádám AL (2017) Azelaic acid accumulates in phloem exudates of TMV-infected tobacco leaves, but its application does not induce local or systemic resistance against selected viral and bacterial pathogens. Acta Physiol Plant 39:9. https://doi.org/10.1007/s11738-016-2303-7

    Article  CAS  Google Scholar 

  11. Ádám AL, Nagy ZÁ, Kátay G, Mergenthaler E, Viczián O (2018) Signals of systemic immunity in plants: progress and open questions. Int J Mol Sci 19(4):1146. https://doi.org/10.3390/ijms19041146

    Article  CAS  PubMed Central  Google Scholar 

  12. Matsui K, Minami A, Hornung E, Shibata H, Kishimoto K, Ahnert V, Kindl H, Kajiwara T, Feussner I (2006) Biosynthesis of fatty acid derived aldehydes is induced upon mechanical wounding and its products show fungicidal activities in cucumber. Phytochemistry 67:649–657 https://doi.org/10.1016/j.phytochem.2006.01.006

  13. Brás EJS, Fortes AM, Chu V, Fernandes P, Conde JP (2019) Microfluidic device for the point of need detection of a pathogen infection biomarker in grapes. Analyst 144:4871–4879.  https://doi.org/10.1039/c9an01002e

  14. Nicolì F, Negro C, Nutricati E, Vergine M, Aprile A, Sabella E, Damiano G, De Bellis L, Luvisi A (2019) Accumulation of azelaic acid in Xylella fastidiosa-infected olive trees: a mobile metabolite for health screening. Phytopathology 109:318–325. https://doi.org/10.1094/PHYTO-07-18-0236-FI

    Article  PubMed  Google Scholar 

  15. Guelette BS, Benning UF, Hoffmann-Benning S (2012) Identification of lipids and lipid-binding proteins in phloem exudates from Arabidopsis thaliana. J Exp Bot 63:3603–3613 https://doi.org/10.1093/jxb/ers028

  16. Wang C, Liu R, Lim G-H, Lorenzo L, Yu K, Zhang K, Hunt AG, Kachroo A, Kachroo P (2018) Pipecolic acid confers systemic immunity by regulating free radicals. Sci Adv 4:eaar4509. https://doi.org/10.1126/sciadv.aar4509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Hungarian National Research, Development and Innovation Office for funding (ALÁ, K112146; LK, K111995 and K128868; AK, FK131401).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lóránt Király .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ádám, A.L., Kátay, G., Künstler, A., Király, L. (2022). Detection of Lipid Peroxidation-Derived Free Azelaic Acid, a Biotic Stress Marker and Other Dicarboxylic Acids in Tobacco by Reversed-Phase HPLC-MS Under Non-derivatized Conditions. In: Mhamdi, A. (eds) Reactive Oxygen Species in Plants. Methods in Molecular Biology, vol 2526. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2469-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2469-2_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2468-5

  • Online ISBN: 978-1-0716-2469-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics