Skip to main content

Molecular Imaging of Tumor Progression and Angiogenesis by Dual Bioluminescence

  • Protocol
  • First Online:
Bioluminescence

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2524))

Abstract

Angiogenesis is a prerequisite for tumor growth and invasion, and anti-angiogenesis has become a highlight in tumor treatment research. However, so far, there is no reliable solution for how to simultaneously visualize the relationship between tumor progression and angiogenesis. Bioluminescence imaging (BLI) has been broadly utilized and is a very promising non-invasive imaging technique with the advantages of low cost, high sensitivity, and robust specificity. In this chapter, we describe a dual bioluminescence imaging BLI protocol for tumor progression and angiogenesis through implanting murine breast cancer cell line 4T1 which stably expressing Renilla luciferase (RLuc) into the transgenic mice with angiogenesis-induced firefly luciferase (FLuc) expression. This modality enables us to synchronously monitor the tumor progression and angiogenesis in the same mouse, which has broad applicability in oncology studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kunz PL (2020) Angiogenesis inhibitors in neuroendocrine tumours: finally coming of age. Lancet Oncol 21(11):1395–1397. https://doi.org/10.1016/s1470-2045(20)30560-x

    Article  CAS  PubMed  Google Scholar 

  2. Ramjiawan RR, Griffioen AW, Duda DG (2017) Anti-angiogenesis for cancer revisited: is there a role for combinations with immunotherapy? Angiogenesis 20(2):185–204. https://doi.org/10.1007/s10456-017-9552-y

    Article  PubMed  PubMed Central  Google Scholar 

  3. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407(6801):249–257. https://doi.org/10.1038/35025220

    Article  CAS  PubMed  Google Scholar 

  4. Lee S, Chen TT, Barber CL, Jordan MC, Murdock J, Desai S, Ferrara N, Nagy A, Roos KP, Iruela-Arispe ML (2007) Autocrine VEGF signaling is required for vascular homeostasis. Cell 130(4):691–703. https://doi.org/10.1016/j.cell.2007.06.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Elshabrawy HA, Chen Z, Volin MV, Ravella S, Virupannavar S, Shahrara S (2015) The pathogenic role of angiogenesis in rheumatoid arthritis. Angiogenesis 18(4):433–448. https://doi.org/10.1007/s10456-015-9477-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Protopsaltis NJ, Liang W, Nudleman E, Ferrara N (2019) Interleukin-22 promotes tumor angiogenesis. Angiogenesis 22(2):311–323. https://doi.org/10.1007/s10456-018-9658-x

    Article  CAS  PubMed  Google Scholar 

  7. Chae SS, Kamoun WS, Farrar CT, Kirkpatrick ND, Niemeyer E, de Graaf AM, Sorensen AG, Munn LL, Jain RK, Fukumura D (2010) Angiopoietin-2 interferes with anti-VEGFR2-induced vessel normalization and survival benefit in mice bearing gliomas. Clin Cancer Res 16(14):3618–3627. https://doi.org/10.1158/1078-0432.Ccr-09-3073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ackermann M, Morse BA, Delventhal V, Carvajal IM, Konerding MA (2012) Anti-VEGFR2 and anti-IGF-1R-Adnectins inhibit Ewing’s sarcoma A673-xenograft growth and normalize tumor vascular architecture. Angiogenesis 15(4):685–695. https://doi.org/10.1007/s10456-012-9294-9

    Article  CAS  PubMed  Google Scholar 

  9. Angst E, Chen M, Mojadidi M, Hines OJ, Reber HA, Eibl G (2010) Bioluminescence imaging of angiogenesis in a murine orthotopic pancreatic cancer model. Mol Imaging Biol 12(6):570–575. https://doi.org/10.1007/s11307-010-0310-4

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hosseinkhani S (2011) Molecular enigma of multicolor bioluminescence of firefly luciferase. Cell Mol Life Sci 68(7):1167–1182. https://doi.org/10.1007/s00018-010-0607-0

    Article  CAS  PubMed  Google Scholar 

  11. Nakatsu T, Ichiyama S, Hiratake J, Saldanha A, Kobashi N, Sakata K, Kato H (2006) Structural basis for the spectral difference in luciferase bioluminescence. Nature 440(7082):372–376. https://doi.org/10.1038/Nature04542

    Article  CAS  PubMed  Google Scholar 

  12. McMillin DW, Delmore J, Weisberg E, Negri JM, Geer DC, Klippel S, Mitsiades N, Schlossman RL, Munshi NC, Kung AL, Griffin JD, Richardson PG, Anderson KC, Mitsiades CS (2010) Tumor cell-specific bioluminescence platform to identify stroma-induced changes to anticancer drug activity. Nat Med 16(4):483–489. https://doi.org/10.1038/nm.2112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tarkin JM, Mason JC, Fayad ZA (2019) Imaging at the inter-face of inflammation and angiogenesis by (18)F-fluciclatide PET. Heart 105(24):1845–1847. https://doi.org/10.1136/heartjnl-2019-315487

    Article  CAS  PubMed  Google Scholar 

  14. Wang R, Zhang K, Tao H, Du W, Wang D, Huang Z, Zhou M, Xu Y, Wang Y, Liu N, Wang H, Li Z (2017) Molecular imaging of tumor angiogenesis and therapeutic effects with dual bioluminescence. Curr Pharm Biotechnol 18(5):422–428. https://doi.org/10.2174/1389201018666170523165053

    Article  CAS  PubMed  Google Scholar 

  15. Rivera LB, Bergers G (2015) CANCER. Tumor angiogenesis, from foe to friend. Science 349(6249):694–695. https://doi.org/10.1126/science.aad0862

    Article  CAS  PubMed  Google Scholar 

  16. Liu Y, Cui J, Wang H, Hezam K, Zhao X, Huang H, Chen S, Han Z, Han ZC, Guo Z, Li Z (2020) Enhanced therapeutic effects of MSC-derived extracellular vesicles with an injectable collagen matrix for experimental acute kidney injury treatment. Stem Cell Res Ther 11(1):161. https://doi.org/10.1186/s13287-020-01668-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang K, Zhao X, Chen X, Wei Y, Du W, Wang Y, Liu L, Zhao W, Han Z, Kong D, Zhao Q, Guo Z, Han Z, Liu N, Ma F, Li Z (2018) Enhanced therapeutic effects of mesenchymal stem cell-derived exosomes with an injectable hydrogel for Hindlimb ischemia treatment. ACS Appl Mater Interfaces 10(36):30081–30091. https://doi.org/10.1021/acsami.8b08449

    Article  CAS  PubMed  Google Scholar 

  18. Feng G, Zhang J, Li Y, Nie Y, Zhu D, Wang R, Liu J, Gao J, Liu N, He N, Du W, Tao H, Che Y, Xu Y, Kong D, Zhao Q, Li Z (2016) IGF-1 C domain-modified hydrogel enhances cell therapy for AKI. J Am Soc Nephrol 27(8):2357–2369. https://doi.org/10.1681/ASN.2015050578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Du W, Zhang K, Zhang S, Wang R, Nie Y, Tao H, Han Z, Liang L, Wang D, Liu J, Liu N, Han Z, Kong D, Zhao Q, Li Z (2017) Enhanced proangiogenic potential of mesenchymal stem cell-derived exosomes stimulated by a nitric oxide releasing polymer. Biomaterials 133:70–81. https://doi.org/10.1016/j.biomaterials.2017.04.030

    Article  CAS  PubMed  Google Scholar 

  20. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21):1182–1186. https://doi.org/10.1056/nejm197111182852108

    Article  CAS  PubMed  Google Scholar 

  21. Zhang K, Wang C, Wang R, Chen S, Li Z (2019) Dual bioluminescence imaging of tumor progression and angiogenesis. J Visualiz Exp 150. https://doi.org/10.3791/59763

Download references

Acknowledgments

This research was supported by the National Key R&D Program of China (2017YFA0103200), National Natural Science Foundation of China-Henan Joint Fund (U2004126), and Tianjin Natural Science Foundation (21JCZDJC00070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongjin Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Liu, Y., Huang, Z., Li, Z. (2022). Molecular Imaging of Tumor Progression and Angiogenesis by Dual Bioluminescence. In: Kim, SB. (eds) Bioluminescence. Methods in Molecular Biology, vol 2524. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2453-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2453-1_34

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2452-4

  • Online ISBN: 978-1-0716-2453-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics