Skip to main content

Bioluminescent and Fluorescent Reporter-Expressing Recombinant SARS-CoV-2

  • Protocol
  • First Online:
Bioluminescence

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2524))

Abstract

Reporter-expressing recombinant severe acute respiratory syndrome coronavirus 2 (rSARS-CoV-2) represents an excellent tool to understand the biology of and ease studying viral infections in vitro and in vivo. The broad range of applications of reporter-expressing recombinant viruses is due to the facilitated expression of fluorescence or bioluminescence readouts. In this chapter, we describe a detailed protocol on the generation of rSARS-CoV-2 expressing Venus, mCherry, and NLuc that represents a valid surrogate to track viral infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Huang C et al (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395(10223):497–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Roberts DL, Rossman JS, Jaric I (2021) Dating first cases of COVID-19. PLoS Pathog 17(6):e1009620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Coronaviridae Study Group of the International Committee on Taxonomy of, V (2020) The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 5(4):536–544

    Article  CAS  Google Scholar 

  4. Harvey WT et al (2021) SARS-CoV-2 variants, spike mutations and immune escape. Nat Rev Microbiol 19:409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Scialo F et al (2021) SARS-CoV-2: one year in the pandemic. What have we learned, the new vaccine era and the threat of SARS-CoV-2 variants. Biomedicine 9(6):611

    CAS  Google Scholar 

  6. Sotrovimab (2006) Drugs and lactation database (LactMed). National Library of Medicine (US), Bethesda

    Google Scholar 

  7. Ledford H (2021) COVID antibody treatments show promise for preventing severe disease. Nature 591(7851):513–514

    Article  CAS  PubMed  Google Scholar 

  8. Tuccori M et al (2021) An overview of the preclinical discovery and development of bamlanivimab for the treatment of novel coronavirus infection (COVID-19): reasons for limited clinical use and lessons for the future. Expert Opin Drug Discov 16:1403

    Article  CAS  PubMed  Google Scholar 

  9. Phan AT et al (2021) Emergent inpatient administration of Casirivimab and Imdevimab antibody Cocktail for the treatment of COVID-19 pneumonia. Cureus 13(5):e15280

    PubMed  PubMed Central  Google Scholar 

  10. O'Brien MP et al (2021) Subcutaneous REGEN-COV antibody combination in early SARS-CoV-2 infection. medRxiv 1–38

    Google Scholar 

  11. Skowronski DM, De Serres G (2021) Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med 384(16):1576–1577

    Article  CAS  PubMed  Google Scholar 

  12. Oliver SE et al (2020) The Advisory Committee on immunization practices' interim recommendation for use of Pfizer-BioNTech COVID-19 vaccine - United States, December 2020. MMWR Morb Mortal Wkly Rep 69(50):1922–1924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nassar M et al (2021) COVID-19 vaccine-induced myocarditis: case report with literature review. Diab Metabol Syndr 15(5):102205–102205

    Article  Google Scholar 

  14. Naqvi AA et al (2020) Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: structural genomics approach. BBA-Mol Basis Dis 1866(10):165878

    Article  CAS  Google Scholar 

  15. Finkel Y et al (2021) The coding capacity of SARS-CoV-2. Nature 589(7840):125–U254

    Article  CAS  PubMed  Google Scholar 

  16. Belouzard S et al (2012) Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses 4(6):1011–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shang J et al (2020) Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci U S A 117(21):11727–11734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ye Y, Hogue BG (2007) Role of the coronavirus E viroporin protein transmembrane domain in virus assembly. J Virol 81(7):3597–3607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Satarker S, Nampoothiri M (2020) Structural proteins in severe acute respiratory syndrome Coronavirus-2. Arch Med Res 51(6):482–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yadav R et al (2021) Role of structural and non-structural proteins and therapeutic targets of SARS-CoV-2 for COVID-19. Cell 10(4):821

    Article  CAS  Google Scholar 

  21. Snijder EJ, Decroly E, Ziebuhr J (2016) The nonstructural proteins directing coronavirus RNA synthesis and processing. Adv Virus Res 96:59–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Raj R (2021) Analysis of non-structural proteins, NSPs of SARS-CoV-2 as targets for computational drug designing. Biochem Biophys Rep 25:100847

    PubMed  Google Scholar 

  23. Liu DX et al (2014) Accessory proteins of SARS-CoV and other coronaviruses. Antivir Res 109:97–109

    Article  CAS  PubMed  Google Scholar 

  24. Michel CJ et al (2020) Characterization of accessory genes in coronavirus genomes. Virol J 17(1):131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Almazán F et al (2014) Coronavirus reverse genetic systems: infectious clones and replicons. Virus Res 189:262–270

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Xie X et al (2020) An infectious cDNA clone of SARS-CoV-2. Cell Host Microbe 27(5):841–848.e3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yount B et al (2002) Systematic assembly of a full-length infectious cDNA of mouse hepatitis virus strain A59. J Virol 76(21):11065–11078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hou YJ et al (2020) SARS-CoV-2 reverse genetics reveals a variable infection gradient in the respiratory tract. Cell 182(2):429–446.e14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shizuya H et al (1992) Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc Natl Acad Sci U S A 89(18):8794–8797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Avila-Perez G et al (2018) Reverse genetic approaches for the generation of recombinant Zika virus. Viruses 10(11):597

    Article  CAS  PubMed Central  Google Scholar 

  31. St-Jean JR et al (2006) Recovery of a neurovirulent human coronavirus OC43 from an infectious cDNA clone. J Virol 80(7):3670–3674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ye C et al (2020) Rescue of SARS-CoV-2 from a single bacterial artificial chromosome. MBio 11, e02168–02120

    Google Scholar 

  33. Ye C et al (2021) Visualization of SARS-CoV-2 infection dynamic. bioRxiv 2021.06.03.446942

    Google Scholar 

  34. Chiem K et al (2021) A bifluorescent-based assay for the identification of neutralizing antibodies against SARS-CoV-2 variants of concern in vitro and in vivo. bioRxiv 2021.06.28.450214

    Google Scholar 

  35. Chiem K et al (2021) Generation and characterization of recombinant SARS-CoV-2 expressing reporter genes. J Virol 95:e02209

    CAS  PubMed Central  Google Scholar 

  36. Chiem K et al (2019) A Luciferase-fluorescent reporter influenza virus for live imaging and quantification of viral infection. J Vis Exp (150), e59890

    Google Scholar 

  37. Zhao H et al (2005) Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo. J Biomed Opt 10(4):41210

    Article  PubMed  CAS  Google Scholar 

  38. Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2(12):905–909

    Article  CAS  PubMed  Google Scholar 

  39. Nogales A et al (2019) A novel fluorescent and bioluminescent Bireporter Influenza A virus to evaluate viral infections. J Virol 93(10):e00032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nogales A et al (2016) Replication-competent fluorescent-expressing influenza B virus. Virus Res 213:69–81

    Article  CAS  PubMed  Google Scholar 

  41. Welsh DK, Noguchi T (2012) Cellular bioluminescence imaging. Cold Spring Harb Protoc 2012(8):pdb.top070607

    Article  PubMed  Google Scholar 

  42. Tran V et al (2013) Highly sensitive real-time in vivo imaging of an influenza reporter virus reveals dynamics of replication and spread. J Virol 87(24):13321–13329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schoggins JW et al (2012) Dengue reporter viruses reveal viral dynamics in interferon receptor-deficient mice and sensitivity to interferon effectors in vitro. Proc Natl Acad Sci U S A 109(36):14610–14615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Luker GD et al (2002) Noninvasive bioluminescence imaging of herpes simplex virus type 1 infection and therapy in living mice. J Virol 76(23):12149–12161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Roehrig JT, Hombach J, Barrett AD (2008) Guidelines for plaque-reduction neutralization testing of human antibodies to dengue viruses. Viral Immunol 21(2):123–132

    Article  CAS  PubMed  Google Scholar 

  46. Bohning K et al (2021) A high throughput reporter virus particle microneutralization assay for quantitation of Zika virus neutralizing antibodies in multiple species. PLoS One 16(4):e0250516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu SL et al (2020) Single-virus tracking: from imaging methodologies to virological applications. Chem Rev 120(3):1936–1979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pahmeier F et al (2021) A versatile reporter system to monitor virus-infected cells and its application to dengue virus and SARS-CoV-2. J Virol 95(4):e01715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fiege JK, Langlois RA (2015) Investigating influenza A virus infection: tools to track infection and limit tropism. J Virol 89(12):6167–6170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Garg H et al (2017) Development of virus-like-particle vaccine and reporter assay for Zika virus. J Virol 91(20):e00834

    Article  PubMed  PubMed Central  Google Scholar 

  51. Al Ali S et al (2016) Use of reporter genes in the generation of vaccinia virus-derived vectors. Viruses 8(5):134

    Article  PubMed Central  CAS  Google Scholar 

  52. Islam MK et al (2016) High-throughput screening using a whole-cell virus replication reporter gene assay to identify inhibitory compounds against Rift Valley fever virus infection. J Biomol Screen 21(4):354–362

    Article  CAS  PubMed  Google Scholar 

  53. Fischl W, Bartenschlager R (2013) High-throughput screening using dengue virus reporter genomes. In: Gong EY (ed) Antiviral methods and protocols. Humana Press, Totowa, pp 205–219

    Chapter  Google Scholar 

  54. Froggatt Heather M et al (2020) Development of a fluorescence-based, high-throughput SARS-CoV-2 3CLpro reporter assay. J Virol 94(22):e01265–e01220

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank the members at Texas Biomedical Research Institute for their efforts in keeping them fully operational during the COVID-19 pandemic and the Institutional Biosafety Committee at Texas Biomedical Research Institute for reviewing our protocols in a time-efficient manner. SARS-CoV-2 research in the Martinez-Sobrido’s laboratory is currently supported by the NIAID/NIH grants RO1AI161363-01, RO1AI161175-01A1, and R43AI165089-01; the Department of Defense (DoD) grants W81XWH2110095 and W81XWH2110103; the San Antonio Partnership for Precision Therapeutic; the Texas Biomedical Research Institute Forum; the University of Texas Health Science Center at San Antonio; the San Antonio Medical Foundation; and the Center for Research on Influenza Pathogenesis and Transmission (CRIPT), a NIAID-funded Center of Excellence for Influenza Research and Response (CEIRR, contract # 75N93021C00014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Martinez-Sobrido .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Morales Vasquez, D., Chiem, K., Ye, C., Martinez-Sobrido, L. (2022). Bioluminescent and Fluorescent Reporter-Expressing Recombinant SARS-CoV-2. In: Kim, SB. (eds) Bioluminescence. Methods in Molecular Biology, vol 2524. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2453-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2453-1_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2452-4

  • Online ISBN: 978-1-0716-2453-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics