Skip to main content

Separation and Characterization of Protein–DNA Complexes by EMSA and In-Gel Footprinting

  • Protocol
  • First Online:
Prokaryotic Gene Regulation

Abstract

In-gel footprinting enables the precise identification of protein binding sites on the DNA after separation of free and protein-bound DNA molecules by gel electrophoresis in native conditions and subsequent digestion by the nuclease activity of the 1,10-phenanthroline-copper ion [(OP)2-Cu+] within the gel matrix. Hence, the technique combines the resolving power of protein–DNA complexes in the electrophoretic mobility shift assay (EMSA) with the precision of target site identification by chemical footprinting. This approach is particularly well suited to characterize distinct molecular assemblies in a mixture of protein–DNA complexes and to identify individual binding sites within composite operators, when the concentration-dependent occupation of binding sites, with a different affinity, results in the generation of complexes with a distinct stoichiometry and migration velocity in gel electrophoresis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dey B, Thukral S, Krishnan S, Chakrobarty M, Gupta S, Manghani C, Rani V (2012) DNA-protein interactions: methods for detection and analysis. Mol Cell Biochem 365:279–299

    Article  CAS  Google Scholar 

  2. Revzin A (1989) Gel electrophoresis assays for DNA-protein interactions. BioTechniques 7:346–355

    CAS  PubMed  Google Scholar 

  3. Calladine CR, Collins CM, Drew HR, Mott MR (1991) A study of electrophoretic mobility of DNA in agarose and polyacrylamide gels. J Mol Biol 221:981–1005

    Article  CAS  Google Scholar 

  4. Carey J (1991) Gel retardation. Methods Enzymol 208:103–117

    Article  CAS  Google Scholar 

  5. Lane D, Prentki P, Chandler M (1992) Use of gel retardation to analyze protein-nucleic acid interactions. Microbiol Rev 56:509–528

    Article  CAS  Google Scholar 

  6. Hellman LM, Fried MG (2007) Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions. Nat Protoc 2:1849–1861

    Article  CAS  Google Scholar 

  7. Brunelle A, Schleif RF (1987) Missing contact probing of DNA-protein interactions. Proc Natl Acad Sci USA 84:6673–6676

    Article  CAS  Google Scholar 

  8. Siebenlist U, Gilbert W (1980) Contacts between Escherichia coli RNA polymerase and an early promoter of phage T7. Proc Natl Acad Sci USA 77:122–126

    Article  CAS  Google Scholar 

  9. Wang H, Glansdorff N, Charlier D (1998) The arginine repressor of Escherichia coli K-12 makes direct contacts to minor and major groove determinants of the operators. J Mol Biol 277:805–824

    Article  CAS  Google Scholar 

  10. Nguyen Le Minh P, Bervoets I, Maes D, Charlier D (2010) The protein-DNA contacts in RutR•carAB operator complexes. Nucleic Acids Res 38:6286–6300

    Article  Google Scholar 

  11. Fried MG, Crothers DM (1981) Equilibria and kinetics of Lac repressor-operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res 9:6505–6525

    Article  CAS  Google Scholar 

  12. Garner MM, Revzin A (1981) A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: application to components of the Escherichia coli lactose operon system. Nucleic Acids Res 9:3047–3060

    Article  CAS  Google Scholar 

  13. Thompson JF, Landy A (1988) Empirical estimation of protein-induced DNA-bending angles: applications to lambda site-specific recombination complexes. Nucleic Acids Res 20:9678–9705

    Google Scholar 

  14. Szwajkajzer D, Dai L, Fukayama JW, Abramczyk B, Fairman R, Carey J (2001) Quantitative analysis of DNA binding by the Escherichia coli arginine repressor. J Mol Biol 312:949–962

    Article  CAS  Google Scholar 

  15. Charlier D, Roovers M, Van Vliet F, Boyen A, Cunin R, Nakamura Y, Glansdorff N, Piérard A (1992) Arginine regulon of Escherichia coli K-12. A study of repressor-operator interactions and of in vitro binding affinities versus in vivo repression. J Mol Biol 226:367–386

    Article  CAS  Google Scholar 

  16. Peeters E, Thia-Toong T-L, Gigot D, Maes D, Charlier D (2004) Ss-LrpB, a novel Lrp-like regulator of Sulfolobus solfataricus P2, binds cooperatively to three conserved targets in its own control region. Mol Microbiol 54:321–336

    Article  CAS  Google Scholar 

  17. Peeters E, van Oeffelen L, Nadal M, Forterre P, Charlier D (2013) A thermodynamic model of the cooperative interaction between the archaeal transcription factor Ss-LrpB and its tripartite operator DNA. Gene 524:330–340

    Article  CAS  Google Scholar 

  18. Song N, Nguyen Duc T, van Oeffelen L, Muyldermans S, Peeters E, Charlier D (2013) Expanded target and cofactor repertoire for the transcriptional activator LysM from Sulfolobus. Nucleic Acids Res 41:2932–2949

    Article  CAS  Google Scholar 

  19. van Oeffelen L, Peeters E, Nguyen Le Minh P, Charlier D (2014) The ‘densitometric image analysis software’ and its application to determine stepwise equilibrium constants from electrophoretic mobility shift assays. PLoS One 9:e85146

    Article  Google Scholar 

  20. Nguyen Le Minh P, Velázquez-Ruiz C, Vandermeeren S, Abwoyo P, Bervoets I, Charlier D (2018) Differential protein-DNA contacts for activation and repression by ArgP, a LysR-type (LTTR) transcriptional regulator in Escherichia coli. Microbiol Res 206:141–158

    Article  CAS  Google Scholar 

  21. Galas DJ, Schmitz A (1978) DNase footprinting: a simple method for the detection of protein-DNA binding specificity. Nucleic Acids Res 5:3157–3170

    Article  CAS  Google Scholar 

  22. Tullius TD, Dombroski BA (1986) Hydroxyl radical “footprinting”: high resolution information about DNA-protein contacts and application to λ repressor and Cro protein. Proc Natl Acad Sci USA 83:5469–5473

    Article  CAS  Google Scholar 

  23. Marshall LE, Graham DR, Reich KA, Sigman DS (1981) Cleavage of deoxuribonucleic acid by the 1,10-phenanthroline-cuprous complex. Hydrogen peroxide requirement and primary and secondary structure specificity. Biochemistry 20:244–250

    Article  CAS  Google Scholar 

  24. Kuwabara MD, Sigman DS (1987) Footprinting DNA-protein complexes in situ following gel retardation assays using 1,10-phenanthroline-copper ion: Escherichia coli RNA polymerase-lac promoter complexes. Biochemistry 26:7234–7238

    Article  CAS  Google Scholar 

  25. Sigman DS, Kuwabara MD, Chen CH, Bruice TW (1991) Nuclease activity of 1,10-phenanthroline-copper in study of protein-DNA interactions. Methods Enzymol 208:414–433

    Article  CAS  Google Scholar 

  26. Papavassiliou AG (1995) Chemical nucleases as probes for studying DNA-protein interactions. Biochem J 305:345–357

    Article  CAS  Google Scholar 

  27. Veal JM, Bull Rill RL (1988) Sequence specificity of DNA cleavage by bis(1,10-phenanthroline)-copper(I). Biochemistry 27:1822–1827

    Article  CAS  Google Scholar 

  28. Spassky A, Sigman DS (1985) Nuclease activity of the 1, 10-phenanthroline-copper ion. Conformational analysis and footprinting of the lac operon. Biochemistry 24:8050–8056

    Article  CAS  Google Scholar 

  29. Maxam AM, Gilbert W (1980) Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol 65:499–560

    Article  CAS  Google Scholar 

  30. Carey J, Lewis DE, Lavoie TA, Yang J (1991) How does trp repressor bind to its operator? J Biol Chem 266:24509–24513

    Article  CAS  Google Scholar 

  31. Xu Y, Sun Y, Huysveld N, Gigot D, Glansdorff N, Charlier D (2003) Regulation of arginine biosynthesis in the psychropiezophilic bacterium Moritella profunda: in vivo repressibility and in vitro repressor-operator contact probing. J Mol Biol 326:353–369

    Article  CAS  Google Scholar 

  32. Vassart A, Van Wolferen M, Orell A, Hong Y, Peeters E, Albers S-V, Charlier D (2013) Sa-Lrp from Sulfolobus acidocaldarius is a versatile, glutamine-responsive, and architectural transcriptional regulator. MicrobiologyOpen 2(1):75–93

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Work in the Microbiology Research Group has been financed by the Research Foundation Flanders (FWO-Vlaanderen), the Institute for Innovation by Science and Technology (IWT), and the Research Council of the Vrije Universiteit Brussel (OZR-VUB). IB is a postdoctoral fellow of the Research Foundation Flanders (Fonds Wetenschappelijk Onderzoek-Vlaanderen).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Charlier .

Editor information

Editors and Affiliations

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Charlier, D., Bervoets, I. (2022). Separation and Characterization of Protein–DNA Complexes by EMSA and In-Gel Footprinting. In: Peeters, E., Bervoets, I. (eds) Prokaryotic Gene Regulation. Methods in Molecular Biology, vol 2516. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2413-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2413-5_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2412-8

  • Online ISBN: 978-1-0716-2413-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics