Skip to main content

Enhanced Transduction of P2X7-Expressing Cells with Recombinant rAAV Vectors

  • Protocol
  • First Online:
The P2X7 Receptor

Abstract

Adeno-associated viruses (AAV) are useful vectors for transducing cells in vitro and in vivo. Targeting of specific cell subsets with AAV is limited by the broad tropism of AAV serotypes. Nanobodies are single immunoglobulin variable domains from heavy chain antibodies that naturally occur in camelids. Their small size and high solubility allow easy reformatting into fusion proteins. In this chapter we provide protocols for inserting a P2X7-specific nanobody into a surface loop of the VP1 capsid protein of AAV2. Such nanobody-displaying recombinant AAV allow 50- to 500-fold stronger transduction of P2X7-expressing cells than the parental AAV. We provide protocols for monitoring the transduction of P2X7-expressing cells by nanobody-displaying rAAV by flow cytometry and fluorescence microscopy.

Anna Marei Mann is the same first author as A.M.E. in Eichhoff et al. Molecular Therapy: Methods & Clinical Development Vol. 15 December 2019.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mingozzi F, High KA (2011) Therapeutic in vivo gene transfer for genetic disease using AAV: Progress and challenges. Nat Rev Genet 12:341–355

    Article  CAS  Google Scholar 

  2. Kotterman MA, Schaffer DV (2014) Engineering adeno-associated viruses for clinical gene therapy. Nat Rev Genet 15:445–451. https://doi.org/10.1038/nrg3742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Colella P, Ronzitti G, Mingozzi F (2018) Emerging issues in AAV-mediated in vivo gene therapy. Mol Ther Meth Clin Dev 8:87–104

    Article  CAS  Google Scholar 

  4. Herrmann AK, Grimm D (2018) High-throughput dissection of AAV–host interactions: the fast and the curious. J Mol Biol 430:2626–2640

    Article  CAS  Google Scholar 

  5. Eichhoff AM, Börner K, Albrecht B et al (2019) Nanobody-enhanced targeting of AAV gene therapy vectors. Mol Ther Meth Clin Dev 15:211–220. https://doi.org/10.1016/j.omtm.2019.09.003

    Article  CAS  Google Scholar 

  6. Kern A, Schmidt K, Leder C et al (2003) Identification of a heparin-binding motif on adeno-associated virus type 2 capsids. J Virol 77:11072–11081. https://doi.org/10.1128/jvi.77.20.11072-11081.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Boucas J, Lux K, Huber A et al (2009) Engineering adeno-associated virus serotype 2-based targeting vectors using a new insertion site-position 453-and single point mutations. J Gene Med 11:1103–1113. https://doi.org/10.1002/jgm.1392

    Article  CAS  PubMed  Google Scholar 

  8. Hamers-Casterman C, Atarhouch T, Muyldermans S et al (1993) Naturally occurring antibodies devoid of light chains. Nature 363:446–448. https://doi.org/10.1038/363446a0

    Article  CAS  PubMed  Google Scholar 

  9. Wesolowski J, Alzogaray V, Reyelt J et al (2009) Single domain antibodies: promising experimental and therapeutic tools in infection and immunity. Med Microbiol Immunol 198:157–174

    Article  CAS  Google Scholar 

  10. Ingram JR, Schmidt FI, Ploegh HL (2018) Exploiting nanobodies’ singular traits. Annu Rev Immunol 36:695–715

    Article  CAS  Google Scholar 

  11. Judd J, Wei F, Nguyen PQ et al (2012) Random insertion of mcherry into VP3 domain of adeno-associated virus yields fluorescent capsids with no loss of infectivity. Mol Ther Nucl Acids 1:e54. https://doi.org/10.1038/mtna.2012.46

    Article  CAS  Google Scholar 

  12. Gray JT, Zolotukhin S (2011) Design and construction of functional AAV vectors. Methods Mol Biol 807:25–46. https://doi.org/10.1007/978-1-61779-370-7_2

    Article  CAS  PubMed  Google Scholar 

  13. Pekrun K, De Alencastro G, Luo QJ et al (2019) Using a barcoded AAV capsid library to select for clinically relevant gene therapy vectors. JCI Insight 4:e131610. https://doi.org/10.1172/jci.insight.131610

    Article  PubMed Central  Google Scholar 

  14. Xiao X, Li J, Samulski RJ (1998) Production of High-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol 72:2224–2232. https://doi.org/10.1128/jvi.72.3.2224-2232.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wobus CE, Hügle-Dörr B, Girod A et al (2000) Monoclonal antibodies against the adeno-associated virus type 2 (AAV-2) capsid: epitope mapping and identification of capsid domains involved in AAV-2–cell interaction and neutralization of AAV-2 infection. J Virol 74:9281–9293. https://doi.org/10.1128/jvi.74.19.9281-9293.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. McCraw DM, O’Donnell JK, Taylor KA et al (2012) Structure of adeno-associated virus-2 in complex with neutralizing monoclonal antibody A20. Virology 431:40–49. https://doi.org/10.1016/j.virol.2012.05.004

    Article  CAS  PubMed  Google Scholar 

  17. Frenzel A, Hust M, Schirrmann T (2013) Expression of recombinant antibodies. Front Immunol 4:217

    Article  Google Scholar 

  18. Zhang J, MacKenzie R, Durocher Y (2009) Production of chimeric heavy-chain antibodies. Methods Mol Biol 525:323–336. https://doi.org/10.1007/978-1-59745-554-1_17

    Article  CAS  PubMed  Google Scholar 

  19. Menzel S, Adriouch S, Bannas P et al (2018) Monitoring expression and enzyme activity of Ecto-ARTCs. In: Methods in molecular biology. Humana Press, Totowa, NJ, pp 167–186

    Google Scholar 

  20. Baum N, Fliegert R, Bauche A et al (2020) Daratumumab and nanobody-based heavy chain antibodies inhibit the ADPR cyclase but not the NAD+ hydrolase activity of CD38-expressing multiple myeloma cells. Cancers (Basel) 13:76. https://doi.org/10.3390/cancers13010076

    Article  CAS  Google Scholar 

  21. Adriouch S, Dubberke G, Diessenbacher P et al (2005) Probing the expression and function of the P2X7 purinoceptor with antibodies raised by genetic immunization. In: Cellular immunology, pp 72–77

    Google Scholar 

  22. Danquah W, Catherine MS, Rissiek B et al (2016) Nanobodies that block gating of the P2X7 ion channel ameliorate inflammation. Sci Transl Med 8:366ra162. https://doi.org/10.1126/scitranslmed.aaf8463

    Article  CAS  PubMed  Google Scholar 

  23. Börner K, Kienle E, Huang LY et al (2020) Pre-arrayed pan-AAV peptide display libraries for rapid single-round screening. Mol Ther 2020:1016–1032. https://doi.org/10.1016/j.ymthe.2020.02.009

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Supported by a stipend from the Claussen-Simon-Stiftung to A.M.M., and grants from the Deutsche Forschungsgemeinschaft to F.K.-N. (No310/13-1, SFB1328Z02), from the German Center for Infection Research to K.B. and D.G. (TTU-HIV 04.803 and TTU-HIV 04.815), and from the Agence Nationale de la Recherche to S.A. (ANR-18-CE92-0046).

We thank Fabienne Seyfried and Josi Gebhard (Institute of Immunology, UKE, Hamburg) for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich Koch-Nolte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mann, A.M. et al. (2022). Enhanced Transduction of P2X7-Expressing Cells with Recombinant rAAV Vectors. In: Nicke, A. (eds) The P2X7 Receptor. Methods in Molecular Biology, vol 2510. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2384-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2384-8_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2383-1

  • Online ISBN: 978-1-0716-2384-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics