Skip to main content

Design and Construction of Functional AAV Vectors

  • Protocol
  • First Online:
Adeno-Associated Virus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 807))

Abstract

Using the basic principles of molecular biology and laboratory techniques presented in this chapter, researchers should be able to create a wide variety of AAV vectors for both clinical and basic research applications. Basic vector design concepts are covered for both protein coding gene expression and small non-coding RNA gene expression cassettes. AAV plasmid vector backbones (available via AddGene) are described, along with critical sequence details for a variety of modular expression components that can be inserted as needed for specific applications. Protocols are provided for assembling the various DNA components into AAV vector plasmids in Escherichia coli, as well as for transferring these vector sequences into baculovirus genomes for large-scale production of AAV in the insect cell production system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goyenvalle, A., Vulin, A., Fougerousse, F., Leturcq, F., Kaplan, J. C., Garcia, L., and Danos, O. (2004) Rescue of dystrophic muscle through U7 snRNA-mediated exon skipping, Science 306, 1796–1799.

    Article  PubMed  CAS  Google Scholar 

  2. Bertrand, E., Castanotto, D., Zhou, C., Carbonnelle, C., Lee, N. S., Good, P., Chatterjee, S., Grange, T., Pictet, R., Kohn, D., Engelke, D., and Rossi, J. J. (1997) The expression cassette determines the functional activity of ribozymes in mammalian cells by controlling their intracellular localization, RNA 3, 75–88.

    PubMed  CAS  Google Scholar 

  3. Goverdhana, S., Puntel, M., Xiong, W., Zirger, J. M., Barcia, C., Curtin, J. F., Soffer, E. B., Mondkar, S., King, G. D., Hu, J., Sciascia, S. A., Candolfi, M., Greengold, D. S., Lowenstein, P. R., and Castro, M. G. (2005) Regulatable gene expression systems for gene therapy applications: Progress and future challenges, Mol. Ther. 12, 189–211.

    Article  PubMed  CAS  Google Scholar 

  4. Akimitsu, N. (2008) Messenger RNA Surveillance Systems Monitoring Proper Translation Termination, J. Biochem. (Tokyo) 143, 1–8.

    Article  CAS  Google Scholar 

  5. Kozak, M. (1986) Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes, Cell 44, 283–292.

    Article  PubMed  CAS  Google Scholar 

  6. Hershberg, R., and Petrov, D. A. (2008) Selection on Codon Bias, Annu. Rev. Genet. 42, 287–299.

    Article  PubMed  CAS  Google Scholar 

  7. Sorensen, M. A., Kurland, C. G., and Pedersen, S. (1989) Codon usage determines translation rate in Escherichia-coli, J. Mol. Biol. 207, 365–377.

    Article  PubMed  CAS  Google Scholar 

  8. Thanaraj, T. A., and Argos, P. (1996) Ribosome-mediated translational pause and protein domain organization, Protein Sci. 5, 1594–1612.

    Article  PubMed  CAS  Google Scholar 

  9. Purvis, I. J., Bettany, A. J. E., Santiago, T. C., Coggins, J. R., Duncan, K., Eason, R., and Brown, A. J. P. (1987) The efficiency of folding of some proteins is increased by controlled rates of translation in vivo. A hypothesis, J. Mol. Biol. 193, 413–417.

    Article  PubMed  CAS  Google Scholar 

  10. Miao, C. H., Ohashi, K., Patijn, G. A., Meuse, L., Ye, X., Thompson, A. R., and Kay, M. A. (2000) Inclusion of the hepatic locus control region, an intron, and untranslated region increases and stabilizes hepatic factor IX gene expression in vivo but not in vitro, Mol.Ther. 1, 522–532.

    Article  PubMed  CAS  Google Scholar 

  11. Qiao, C., Wang, B., Zhu, X., Li, J., and Xiao, X. (2002) A novel gene expression control system and its use in stable, high-titer 293 cell-based adeno-associated virus packaging cell lines, J. Virol. 76, 13015–13027.

    Article  PubMed  CAS  Google Scholar 

  12. Chao, H. J., Sun, L. W., Bruce, A., Xiao, X., and Walsh, C. E. (2002) Expression of human factor VIII by splicing between dimerized AAV vectors, Mol. Ther. 5, 716–722.

    Article  PubMed  CAS  Google Scholar 

  13. Szymczak, A. L., Workman, C. J., Wang, Y., Vignali, K. M., Dilioglou, S., Vanin, E. F., and Vignali, D. A. (2004) Correction of multi-gene deficiency in vivo using a single ‘self-cleaving’ 2A peptide-based retroviral vector, Nat. Biotechnol. 22, 589–594.

    Article  PubMed  CAS  Google Scholar 

  14. Bartel, D. P. (2009) MicroRNAs: Target Recognition and Regulatory Functions, Cell 136, 215–233.

    Article  PubMed  CAS  Google Scholar 

  15. Murray, E. L., and Schoenberg, D. R. (2007) A plus U-rich instability elements differentially activate 5′–3′ and 3′–5′ mRNA decay, Mol. Cell. Biol. 27, 2791–2799.

    Article  PubMed  CAS  Google Scholar 

  16. Brown, B. D., Venneri, M. A., Zingale, A., Sergi, L. S., and Naldini, L. (2006) Endogenous microRNA regulation suppresses transgene expression in hematopoietic lineages and enables stable gene transfer, Nat. Med. 12, 585–591.

    Article  PubMed  CAS  Google Scholar 

  17. Brummelkamp, T. R., Bernards, R., and Agami, R. (2002) A system for stable expression of short interfering RNAs in mammalian cells, Science 296, 550–553.

    Article  PubMed  CAS  Google Scholar 

  18. Silva, J. M., Li, M. Z., Chang, K., Ge, W., Golding, M. C., Rickles, R. J., Siolas, D., Hu, G., Paddison, P. J., Schlabach, M. R., Sheth, N., Bradshaw, J., Burchard, J., Kulkarni, A., Cavet, G., Sachidanandam, R., McCombie, W. R., Cleary, M. A., Elledge, S. J., and Hannon, G. J. (2005) Second-generation shRNA libraries covering the mouse and human genomes, Nat.Genet. 37, 1281–1288.

    PubMed  CAS  Google Scholar 

  19. Stegmeier, F., Hu, G., Rickles, R. J., Hannon, G. J., and Elledge, S. J. (2005) A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells, Proc. Natl. Acad. Sci. U.S.A. 102, 13212–13217.

    Article  PubMed  CAS  Google Scholar 

  20. Boudreau, R. L., Monteys, A. M., and Davidson, B. L. (2008) Minimizing variables among hairpin-based RNAi vectors reveals the potency of shRNAs, Rna-a Publication of the Rna Society 14, 1834–1844.

    Article  CAS  Google Scholar 

  21. Boudreau, R. L., Martins, I., and Davidson, B. L. (2009) Artificial MicroRNAs as siRNA Shuttles: Improved Safety as Compared to shRNAs In vitro and In vivo, Mol. Ther. 17, 169–175.

    Article  PubMed  CAS  Google Scholar 

  22. Liu, Y. P., Haasnoot, J., ter Brake, O., Berkhout, B., and Konstantinova, P. (2008) Inhibition of HIV-1 by multiple siRNAs expressed from a single microRNA polycistron, Nucleic Acids Res. 36, 2811–2824.

    Article  PubMed  CAS  Google Scholar 

  23. Xiao, X., Li, J., and Samulski, R. J. (1998) Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus, The Journal of Virology 72, 2224–2232.

    CAS  Google Scholar 

  24. Aslanidi, G., Lamb, K., and Zolotukhin, S. (2009) An inducible system for highly efficient production of recombinant adeno-associated virus (rAAV) vectors in insect Sf9 cells, Proc. Natl. Acad. Sci. U.S.A. 106, 5059–5064.

    Article  PubMed  CAS  Google Scholar 

  25. Chen, H. (2008) Intron splicing-mediated expression of AAV Rep and Cap genes and production of AAV vectors in insect cells, Mol. Ther. 16, 924–930.

    Article  PubMed  CAS  Google Scholar 

  26. Smith, R. H., Levy, J. R., and Kotin, R. M. (2009) A Simplified Baculovirus-AAV Expres­sion Vector System Coupled With One-step Affinity Purification Yields High-titer rAAV Stocks From Insect Cells, Mol. Ther. 17, 1888–96.

    Google Scholar 

  27. Urabe, M., Ding, C., and Kotin, R. M. (2002) Insect cells as a factory to produce adeno-associated virus type 2 vectors, Hum. Gene Ther. 13, 1935–1943.

    Article  PubMed  CAS  Google Scholar 

  28. Chomczynski, P., and Rymaszewski, M. (2006) Alkaline polyethylene glycol-based method for direct PCR from bacteria, eukaryotic tissue samples, and whole blood, Biotechniques 40, 454, 456, 458.

    Google Scholar 

  29. Shetty, R. P., Endy, D., and Knight, T. F., Jr. (2008) Engineering BioBrick vectors from BioBrick parts, J. Biol. Eng. 2, 5.

    Article  PubMed  Google Scholar 

  30. Arad, U. (1998) Modified Hirt procedure for rapid purification of extrachromosomal DNA from mammalian cells, Biotechniques 24, 760–762.

    PubMed  CAS  Google Scholar 

  31. Cecchini, S., Negrete, A., and Kotin, R. M. (2008) Toward exascale production of recombinant adeno-associated virus for gene transfer applications, Gene Ther. 15, 823–830.

    Article  PubMed  CAS  Google Scholar 

  32. Negrete, A., and Kotin, R. M. (2007) Production of recombinant adeno-associated vectors using two bioreactor configurations at different scales, J. Virol. Methods 145, 155–161.

    Article  PubMed  CAS  Google Scholar 

  33. Negrete, A., and Kotin, R. M. (2008) Large-scale production of recombinant adeno-associated viral vectors, Methods Mol. Biol. 433, 79–96.

    CAS  Google Scholar 

  34. Negrete, A., and Kotin, R. M. (2008) Strategies for manufacturing recombinant adeno-associated virus vectors for gene therapy applications exploiting baculovirus technology, Brief. Funct. Genomic. Proteomic. 7, 303–311.

    Article  PubMed  CAS  Google Scholar 

  35. Negrete, A., Yang, L. C., Mendez, A. F., Levy, J. R., and Kotin, R. M. (2007) Economized large-scale production of high yield of rAAV for gene therapy applications exploiting baculovirus expression system, J. Gene Med. 9, 938–948.

    Article  PubMed  CAS  Google Scholar 

  36. Aucoin, M. G., Perrier, M., and Kamen, A. A. (2008) Critical assessment of current adeno-associated viral vector production and quantification methods, Biotechnol Adv 26, 73–88.

    Article  PubMed  CAS  Google Scholar 

  37. Cao, L., Liu, Y. H., During, M. J., and Xiao, W. D. (2000) High-titer, wild-type free recombinant adeno-associated virus vector production using intron-containing helper plasmids, J. Virol. 74, 11456–11463.

    Article  PubMed  CAS  Google Scholar 

  38. Nathwani, A. C., Gray, J. T., Ng, C. Y., Zhou, J., Spence, Y., Waddington, S. N., Tuddenham, E. G., Kemball-Cook, G., McIntosh, J., Boon-Spijker, M., Mertens, K., and Davidoff, A. M. (2006) Self-complementary adeno-associated virus vectors containing a novel liver-specific human factor IX expression cassette enable highly efficient transduction of murine and nonhuman primate liver, Blood. 107, 2653–2661.

    Article  PubMed  CAS  Google Scholar 

  39. Hoesche, C., Sauerwald, A., Veh, R. W., Krippl, B., and Kilimann, M. W. (1993) The 5′-flanking region of the rat synapsin-I gene directs neuron-specific and developmentally-regulated reporter gene-expression in transgenic mice, J. Biol. Chem. 268, 26494–26502.

    PubMed  CAS  Google Scholar 

  40. Thiel, G., Greengard, P., and Sudhof, T. C. (1991) Characterization of tissue-specific transcription by the human synapsin-I gene promoter, Proc. Natl. Acad. Sci. U.S.A. 88, 3431–3435.

    Article  PubMed  CAS  Google Scholar 

  41. Shield, M. A., Haugen, H. S., Clegg, C. H., and Hauschka, S. D. (1996) E-box sites and a proximal regulatory region of the muscle creatine kinase gene differentially regulate expression in diverse skeletal muscles and cardiac muscle of transgenic mice, Mol. Cell. Biol. 16, 5058–5068.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John T. Gray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Gray, J.T., Zolotukhin, S. (2012). Design and Construction of Functional AAV Vectors. In: Snyder, R., Moullier, P. (eds) Adeno-Associated Virus. Methods in Molecular Biology, vol 807. Humana Press. https://doi.org/10.1007/978-1-61779-370-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-370-7_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-369-1

  • Online ISBN: 978-1-61779-370-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics