Skip to main content

Heterologous Expression of Membrane Proteins in E. coli

  • Protocol
  • First Online:
Heterologous Expression of Membrane Proteins

Abstract

Over the decades, the bacterium Escherichia coli (E. coli) has become the cornerstone of recombinant protein production, used for heterologous synthesis of a variety of membrane proteins. Due to its rapid growth to high densities in cheap media, and its ease of manipulation and handling, E. coli is an excellent host cell for a range of membrane protein targets. Furthermore, its genetic tractability allows for a variety of gene constructs to be screened for optimal expression conditions, resulting in relatively high yields of membrane protein in a short amount of time. Here, we describe the general workflow for the production of membrane proteins in E. coli. The protocols we provide show how the gene of interest is modified, transferred to an expression vector and host, and how membrane protein yields can be optimized and analyzed. The examples we illustrate are well suited for scientists who are starting their journey into the world of membrane protein production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kesidis A, Depping P, Lode A, Vaitsopoulou A, Bill RM, Goddard AD, Rothnie AJ (2020) Expression of eukaryotic membrane proteins in eukaryotic and prokaryotic hosts. Methods 180:3–18. https://doi.org/10.1016/j.ymeth.2020.06.006

    Article  CAS  PubMed  Google Scholar 

  2. Lodish H, Berk A, Kaiser CA, Krieger M, Scott MP, Bretscher A, Ploegh H, Matsudaira P (2008) Molecular cell biology. Macmillan, London

    Google Scholar 

  3. Santos R, Ursu O, Gaulton A, Bento AP, Donadi RS, Bologa CG, Karlsson A, Al-Lazikani B, Hersey A, Oprea TI, Overington JP (2017) A comprehensive map of molecular drug targets. Nat Rev Drug Discov 16(1):19–34. https://doi.org/10.1038/nrd.2016.230

    Article  CAS  PubMed  Google Scholar 

  4. Dilworth MV, Piel MS, Bettaney KE, Ma P, Luo J, Sharples D, Poyner DR, Gross SR, Moncoq K, Henderson PJF, Miroux B, Bill RM (2018) Microbial expression systems for membrane proteins. Methods 147:3–39. https://doi.org/10.1016/j.ymeth.2018.04.009

    Article  CAS  PubMed  Google Scholar 

  5. Wagner S, Bader ML, Drew D, de Gier JW (2006) Rationalizing membrane protein overexpression. Trends Biotechnol 24(8):364–371. https://doi.org/10.1016/j.tibtech.2006.06.008

    Article  CAS  PubMed  Google Scholar 

  6. Wagner S, Klepsch MM, Schlegel S, Appel A, Draheim R, Tarry M, Hogbom M, van Wijk KJ, Slotboom DJ, Persson JO, de Gier JW (2008) Tuning Escherichia coli for membrane protein overexpression. Proc Natl Acad Sci U S A 105(38):14371–14376. https://doi.org/10.1073/pnas.0804090105

    Article  PubMed  PubMed Central  Google Scholar 

  7. Miroux B, Walker JE (1996) Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol 260(3):289–298. https://doi.org/10.1006/jmbi.1996.0399

    Article  CAS  PubMed  Google Scholar 

  8. Horne JE, Brockwell DJ, Radford SE (2020) Role of the lipid bilayer in outer membrane protein folding in Gram-negative bacteria. J Biol Chem 295(30):10340–10367. https://doi.org/10.1074/jbc.REV120.011473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schiffrin B, Brockwell DJ, Radford SE (2017) Outer membrane protein folding from an energy landscape perspective. BMC Biol 15(1):123. https://doi.org/10.1186/s12915-017-0464-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Konovalova A, Kahne DE, Silhavy TJ (2017) Outer Membrane Biogenesis. Annu Rev Microbiol 71:539–556. https://doi.org/10.1146/annurev-micro-090816-093754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Browning DF, Bavro VN, Mason JL, Sevastsyanovich YR, Rossiter AE, Jeeves M, Wells TJ, Knowles TJ, Cunningham AF, Donald JW (2015) Cross-species chimeras reveal BamA POTRA and β-barrel domains must be fine-tuned for efficient OMP insertion. Mol Microbiol 97(4):646–659

    Article  CAS  Google Scholar 

  12. Hothersall J, Godfrey RE, Fanitsios C, Overton TW, Busby SJW, Browning DF (2021) The PAR promoter expression system: modified lac promoters for controlled recombinant protein production in Escherichia coli. New Biotechnol 64:1–8. https://doi.org/10.1016/j.nbt.2021.05.001

    Article  CAS  Google Scholar 

  13. Hardy D, Desuzinges Mandon E, Rothnie AJ, Jawhari A (2018) The yin and yang of solubilization and stabilization for wild-type and full-length membrane protein. Methods 147:118–125. https://doi.org/10.1016/j.ymeth.2018.02.017

    Article  CAS  PubMed  Google Scholar 

  14. Pandey A, Shin K, Patterson RE, Liu XQ, Rainey JK (2016) Current strategies for protein production and purification enabling membrane protein structural biology. Biochem Cell Biol 94(6):507–527. https://doi.org/10.1139/bcb-2015-0143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Orwick-Rydmark M, Arnold T, Linke D (2016) The use of detergents to purify membrane proteins. Current protocols in protein science 84 (1):4.8.1–4.8.35

    Google Scholar 

  16. Rothnie AJ (2016) Detergent-free membrane protein purification. Methods Mol Biol 1432:261–267. https://doi.org/10.1007/978-1-4939-3637-3_16

    Article  CAS  PubMed  Google Scholar 

  17. Page L, Griffiths L, Cole JA (1990) Different physiological roles of two independent pathways for nitrite reduction to ammonia by enteric bacteria. Arch Microbiol 154(4):349–354

    Article  CAS  Google Scholar 

  18. Squire DJ, Xu M, Cole JA, Busby SJ, Browning DF (2009) Competition between NarL-dependent activation and Fis-dependent repression controls expression from the Escherichia coli yeaR and ogt promoters. Biochem J 420(2):249–257. https://doi.org/10.1042/BJ20090183

    Article  CAS  PubMed  Google Scholar 

  19. Ward A, Sanderson N, O’Reilly J, Rutherford N, Poolman B, Henderson P (2000) The amplified expression, identification, purification, assay and properties of histidine-tagged bacterial membrane proteins. In: Baldwin SA (ed) Membrane transport - a practical approach. Oxford University Press, Oxford, pp 141–166

    Google Scholar 

  20. Legros C, Pollmann V, Knaus HG, Farrell AM, Darbon H, Bougis PE, Martin-Eauclaire MF, Pongs O (2000) Generating a high affinity scorpion toxin receptor in KcsA-Kv1.3 chimeric potassium channels. J Biol Chem 275(22):16918–16924. https://doi.org/10.1074/jbc.275.22.16918

    Article  CAS  PubMed  Google Scholar 

  21. Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280(5360):69–77. https://doi.org/10.1126/science.280.5360.69

    Article  CAS  PubMed  Google Scholar 

  22. Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, Morris JH, Ferrin TE (2021) UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci 30(1):70–82. https://doi.org/10.1002/pro.3943

    Article  CAS  PubMed  Google Scholar 

  23. Hong H, Patel DR, Tamm LK, van den Berg B (2006) The outer membrane protein OmpW forms an eight-stranded beta-barrel with a hydrophobic channel. J Biol Chem 281(11):7568–7577. https://doi.org/10.1074/jbc.M512365200

    Article  CAS  PubMed  Google Scholar 

  24. Schrodinger, LLC (2010) The PyMOL Molecular Graphics System, Version 1.3r1

    Google Scholar 

Download references

Acknowledgments

We are grateful for funding from the European Union’s Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement No. 847419 (MemTrain) as well as the ERACoBioTech MeMBrane project and BBSRC (BB/R02152X/1) to A.D.G, A.J.R, and R.M.B. D.F.B was supported by BBSRC grants BB/M018261/1 and BB/R017689/1. M.M.R.L. acknowledges support from grant CONACyT (2018-000024-01EXTF-00053).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Douglas F. Browning or Alan D. Goddard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Depping, P. et al. (2022). Heterologous Expression of Membrane Proteins in E. coli. In: Mus-Veteau, I. (eds) Heterologous Expression of Membrane Proteins. Methods in Molecular Biology, vol 2507. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2368-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2368-8_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2367-1

  • Online ISBN: 978-1-0716-2368-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics