Skip to main content

Computational Modeling of Mitochondria to Understand the Dynamics of Oxidative Stress

  • Protocol
  • First Online:
Mitochondria

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2497))

Abstract

Mitochondria are complex organelles that use catabolic metabolism to produce ATP which is the critical energy source for cell function. Oxidative phosphorylation by the electron transport chain, which receives reducing equivalents (NADH and FADH2) from the tricarboxylic acid cycle, also produces reactive oxygen species (ROS) as a by-product at complex I and III. ROS play a significant role in health and disease. In order to better understand this process, a computational model of mitochondrial energy metabolism and the production of ROS has been developed. The model demonstrates the process regulating ROS production and removal and how different energy substrates can affect ROS production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Liu SS (2010) Mitochondrial Q cycle-derived superoxide and chemiosmotic bioenergetics. Ann N Y Acad Sci 1201:84–95

    Article  CAS  Google Scholar 

  2. Liu Y, Fiskum G, Schubert D (2002) Generation of reactive oxygen species by the mitochondrial electron transport chain. J Neurochem 80(5):780–787

    Article  CAS  Google Scholar 

  3. Hirst J (2005) Energy transduction by respiratory complex I--an evaluation of current knowledge. Biochem Soc Trans 33(pt 3):525–529

    Article  CAS  Google Scholar 

  4. Demin OV, Kholodenko BN, Skulachev VP (1998) A model of O2.-generation in the complex III of the electron transport chain. Mol Cell Biochem 184(1–2):21–33

    Article  CAS  Google Scholar 

  5. Nguyen MH, Dudycha SJ, Jafri MS (2007) Effect of Ca2+ on cardiac mitochondrial energy production is modulated by Na+ and H+ dynamics. Am J Physiol Cell Physiol 292(6):C2004–C2020

    Article  CAS  Google Scholar 

  6. Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59(3):527–605

    Article  CAS  Google Scholar 

  7. McAdam ME, Fox RA, Lavelle F, Fielden EM (1977) A pulse-radiolysis study of the manganese-containing superoxide dismutase from Bacillus stearothermophilus. A kinetic model for the enzyme action. Biochem J 165(1):71–79

    Article  CAS  Google Scholar 

  8. Cortassa S, Aon MA, Winslow RL, O’Rourke B (2004) A mitochondrial oscillator dependent on reactive oxygen species. Biophys J 87(3):2060–2073

    Article  CAS  Google Scholar 

  9. Sasaki K, Bannai S, Makino N (1998) Kinetics of hydrogen peroxide elimination by human umbilical vein endothelial cells in culture. Biochim Biophys Acta 1380(2):275–288

    Article  CAS  Google Scholar 

  10. Flohe L, Loschen G, Gunzler WA, Eichele E (1972) Glutathione peroxidase, V. The kinetic mechanism. Hoppe-Seylers Z Physiol Chem 353(6):987–999

    Article  CAS  Google Scholar 

  11. Ogura Y (1955) Catalase activity at high concentration of hydrogen peroxide. Arch Biochem Biophys 57(2):288–300

    Article  CAS  Google Scholar 

  12. Rydstrom J, da Cruz AT, Ernster L (1970) Factors governing the kinetics and steady state of the mitochondrial nicotinamide nucleotide transhydrogenase system. Eur J Biochem 17(1):56–62

    Article  CAS  Google Scholar 

  13. Thorburn DR, Kuchel PW (1985) Regulation of the human-erythrocyte hexose-monophosphate shunt under conditions of oxidative stress. A study using NMR spectroscopy, a kinetic isotope effect, a reconstituted system and computer simulation. Eur J Biochem 150(2):371–386

    Article  CAS  Google Scholar 

  14. Beard D (2005) A biophysical model of the mitochondrial respiratory system and oxidative phosphorylation. PLoS Comput Biol 2005:e36

    Article  Google Scholar 

  15. Huttemann M, Lee I, Pecinova A, Pecina P, Przyklenk K, Doan JW (2008) Regulation of oxidative phosphorylation, the mitochondrial membrane potential, and their role in human disease. J Bioenerg Biomembr 40(5):445–456

    Article  CAS  Google Scholar 

  16. Sherwood S, Hirst J (2006) Investigation of the mechanism of proton translocation by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria: does the enzyme operate by a Q-cycle mechanism? Biochem J 400(3):541–550

    Article  CAS  Google Scholar 

  17. Zickermann V, Drose S, Tocilescu MA, Zwicker K, Kerscher S, Brandt U (2008) Challenges in elucidating structure and mechanism of proton pumping NADH:ubiquinone oxidoreductase (complex I). J Bioenerg Biomembr 40(5):475–483

    Article  CAS  Google Scholar 

  18. Lambert AJ, Brand MD (2004) Superoxide production by NADH:ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane. Biochem J 382(pt 2):511–517

    Article  CAS  Google Scholar 

  19. Lambert AJ, Brand MD (2004) Inhibitors of the quinone-binding site allow rapid superoxide production from mitochondrial NADH:ubiquinone oxidoreductase (complex I). J Biol Chem 279(38):39414–39420

    Article  CAS  Google Scholar 

  20. Kussmaul L, Hirst J (2006) The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proc Natl Acad Sci U S A 103(20):7607–7612

    Article  CAS  Google Scholar 

  21. Korshunov SS, Skulachev VP, Starkov AA (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett 416(1):15–18

    Article  CAS  Google Scholar 

  22. Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552(pt 2):335–344

    Article  CAS  Google Scholar 

  23. Turrens JF, Boveris A (1980) Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J 191(2):421–427

    Article  CAS  Google Scholar 

  24. Turrens JF, Freeman BA, Levitt JG, Crapo JD (1982) The effect of hyperoxia on superoxide production by lung submitochondrial particles. Arch Biochem Biophys 217(2):401–410

    Article  CAS  Google Scholar 

  25. Cadenas E, Davies KJ (2000) Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med 29(3–4):222–230

    Article  CAS  Google Scholar 

  26. Solaini G, Harris DA (2005) Biochemical dysfunction in heart mitochondria exposed to ischaemia and reperfusion. Biochem J 390(pt 2):377–394

    Article  CAS  Google Scholar 

  27. Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417(1):1–13

    Article  CAS  Google Scholar 

  28. Vinogradov AD, Grivennikova VG (2005) Generation of superoxide-radical by the NADH:ubiquinone oxidoreductase of heart mitochondria. Biochem Biokhim 70(2):120–127

    Article  CAS  Google Scholar 

  29. Maklashina E, Cecchini G (1999) Comparison of catalytic activity and inhibitors of quinone reactions of succinate dehydrogenase (succinate-ubiquinone oxidoreductase) and fumarate reductase (menaquinol-fumarate oxidoreductase) from Escherichia coli. Arch Biochem Biophys 369(2):223–232

    Article  CAS  Google Scholar 

  30. Magnus G, Keizer J (1998) Model of beta-cell mitochondrial calcium handling and electrical activity. II. Mitochondrial variables. Am J Physiol 274(4 pt 1):C1174–C1184

    Article  CAS  Google Scholar 

  31. Hsu JL, Hsieh Y, Tu C, O’Connor D, Nick HS, Silverman DN (1996) Catalytic properties of human manganese superoxide dismutase. J Biol Chem 271(30):17687–17691

    Article  CAS  Google Scholar 

  32. Fridovich I (1975) Superoxide dismutases. Annu Rev Biochem 44:147–159

    Article  CAS  Google Scholar 

  33. McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244(22):6049–6055

    Article  CAS  Google Scholar 

  34. Fielden EM, Roberts PB, Bray RC, Lowe DJ, Mautner GN, Rotilio G, Calabrese L (1974) Mechanism of action of superoxide dismutase from pulse radiolysis and electron paramagnetic resonance. Evidence that only half the active sites function in catalysis. Biochem J 139(1):49–60

    Article  CAS  Google Scholar 

  35. Cortassa S, Aon MA, Winslow RL, O’Rourke B (2004) A mitochondrial oscillator dependent on reactive oxygen species. Biophys J 87(3):2060–2073

    Article  CAS  Google Scholar 

  36. Bray RC, Cockle SA, Fielden EM, Roberts PB, Rotilio G, Calabrese L (1974) Reduction and inactivation of superoxide dismutase by hydrogen peroxide. Biochem J 139(1):43–48

    Article  CAS  Google Scholar 

  37. Makino N, Mochizuki Y, Bannai S, Sugita Y (1994) Kinetic studies on the removal of extracellular hydrogen peroxide by cultured fibroblasts. J Biol Chem 269(2):1020–1025

    Article  CAS  Google Scholar 

  38. Mills GC (1957) Hemoglobin catabolism. I. Glutathione peroxidase, an erythrocyte enzyme which protects hemoglobin from oxidative breakdown. J Biol Chem 229(1):189–197

    Article  CAS  Google Scholar 

  39. Muresanu C, Copolovici L (2004) Kinetic method for acetylsalicylic acid determination based on its inhibitory effect upon the catalytic decomposition of H(2)O(2). Anal Bioanal Chem 378(7):1868–1872

    Article  CAS  Google Scholar 

  40. George P (1949) The effect of the peroxide concentration and other factors on the decomposition of hydrogen peroxide by catalase. Biochem J 44(2):197–205

    Article  CAS  Google Scholar 

  41. Sheeran FL, Rydstrom J, Shakhparonov MI, Pestov NB, Pepe S (2010) Diminished NADPH transhydrogenase activity and mitochondrial redox regulation in human failing myocardium. Biochim Biophys Acta 1797(6–7):1138–1148

    Article  CAS  Google Scholar 

  42. Hatefi Y, Yamaguchi M (1996) Nicotinamide nucleotide transhydrogenase: a model for utilization of substrate binding energy for proton translocation. FASEB J 10(4):444–452

    Article  CAS  Google Scholar 

  43. Hoek JB, Rydstrom J (1988) Physiological roles of nicotinamide nucleotide transhydrogenase. Biochem J 254(1):1–10

    Article  CAS  Google Scholar 

  44. Vogel R, Wiesinger H, Hamprecht B, Dringen R (1999) The regeneration of reduced glutathione in rat forebrain mitochondria identifies metabolic pathways providing the NADPH required. Neurosci Lett 275(2):97–100

    Article  CAS  Google Scholar 

  45. Holmuhamedov EL, Wang L, Terzic A (1999) ATP-sensitive K+ channel openers prevent Ca2+ overload in rat cardiac mitochondria. J Physiol 519(pt 2):347–360

    Article  CAS  Google Scholar 

  46. Nakae Y, Kwok WM, Bosnjak ZJ, Jiang MT (2003) Isoflurane activates rat mitochondrial ATP-sensitive K+ channels reconstituted in lipid bilayers. Am J Phys Heart Circ Phys 284(5):H1865–H1871

    CAS  Google Scholar 

  47. Blank PS, Silverman HS, Chung OY, Hogue BA, Stern MD, Hansford RG, Lakatta EG, Capogrossi MC (1992) Cytosolic pH measurements in single cardiac myocytes using carboxy-seminaphthorhodafluor-1. Am J Phys 263(1 pt 2):H276–H284

    CAS  Google Scholar 

  48. Gursahani HI, Schaefer S (2004) Acidification reduces mitochondrial calcium uptake in rat cardiac mitochondria. Am J Phys Heart Circ Phys 287(6):H2659–H2665

    CAS  Google Scholar 

  49. Hansford RG, Hogue BA, Mildaziene V (1997) Dependence of H2O2 formation by rat heart mitochondria on substrate availability and donor age. J Bioenerg Biomembr 29(1):89–95

    Article  CAS  Google Scholar 

  50. Terada H (1990) Uncouplers of oxidative phosphorylation. Environ Health Perspect 87:213–218

    Article  CAS  Google Scholar 

  51. Kessler RJ, Tyson CA, Green DE (1976) Mechanism of uncoupling in mitochondria: uncouplers as ionophores for cycling cations and protons. Proc Natl Acad Sci U S A 73(9):3141–3145

    Article  CAS  Google Scholar 

  52. Korzeniewski B (1996) Simulation of state 4 --> state 3 transition in isolated mitochondria. Biophys Chem 57(2–3):143–153

    Article  CAS  Google Scholar 

  53. Hoffman DL, Brookes PS (2009) Oxygen sensitivity of mitochondrial reactive oxygen species generation depends on metabolic conditions. J Biol Chem 284(24):16236–16245

    Article  CAS  Google Scholar 

  54. Liu SS (1997) Generating, partitioning, targeting and functioning of superoxide in mitochondria. Biosci Rep 17(3):259–272

    Article  CAS  Google Scholar 

  55. Andreyev AY, Kushnareva YE, Starkov AA (2005) Mitochondrial metabolism of reactive oxygen species. Biochem Biokhim 70(2):200–214

    Article  CAS  Google Scholar 

  56. Chauvin C, De Oliveira F, Ronot X, Mousseau M, Leverve X, Fontaine E (2001) Rotenone inhibits the mitochondrial permeability transition-induced cell death in U937 and KB cells. J Biol Chem 276(44):41394–41398

    Article  CAS  Google Scholar 

  57. Bernardi P, Vassanelli S, Veronese P, Colonna R, Szabo I, Zoratti M (1992) Modulation of the mitochondrial permeability transition pore. Effect of protons and divalent cations. J Biol Chem 267(5):2934–2939

    Article  CAS  Google Scholar 

  58. Batandier C, Guigas B, Detaille D, El-Mir MY, Fontaine E, Rigoulet M, Leverve XM (2006) The ROS production induced by a reverse-electron flux at respiratory-chain complex 1 is hampered by metformin. J Bioenerg Biomembr 38(1):33–42

    Article  CAS  Google Scholar 

  59. Izzo G, Guerrieri F, Papa S (1978) On the mechanism of inhibition of the respiratory chain by 2-heptyl-4-hydroxyquinoline-N-oxide. FEBS Lett 93(2):320–322

    Article  CAS  Google Scholar 

  60. Huang LS, Cobessi D, Tung EY, Berry EA (2005) Binding of the respiratory chain inhibitor antimycin to the mitochondrial bc1 complex: a new crystal structure reveals an altered intramolecular hydrogen-bonding pattern. J Mol Biol 351(3):573–597

    Article  CAS  Google Scholar 

  61. Brand MD, Affourtit C, Esteves TC, Green K, Lambert AJ, Miwa S, Pakay JL, Parker N (2004) Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radic Biol Med 37(6):755–767

    Article  CAS  Google Scholar 

  62. Adam-Vizi V, Chinopoulos C (2006) Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends Pharmacol Sci 27(12):639–645

    Article  CAS  Google Scholar 

  63. Batandier C (2004) Opening of the mitochondrial permeability transition pore induces reactive oxygen species production at the level of the respiratory chain complex I. J Biol Chem 279(17):17197–17204

    Article  CAS  Google Scholar 

  64. Muller FL, Liu Y, Abdul-Ghani MA, Lustgarten MS, Bhattacharya A, Jang YC, Van Remmen H (2008) High rates of superoxide production in skeletal-muscle mitochondria respiring on both complex I- and complex II-linked substrates. Biochem J 409(2):491–499

    Article  CAS  Google Scholar 

  65. Kohlhaas M, Liu T, Knopp A, Zeller T, Ong MF, Bohm M, O’Rourke B, Maack C (2010) Elevated cytosolic Na+ increases mitochondrial formation of reactive oxygen species in failing cardiac myocytes. Circulation 121(14):1606–1613

    Article  CAS  Google Scholar 

  66. Aon MA, Cortassa S, Maack C, O’Rourke B (2007) Sequential opening of mitochondrial ion channels as a function of glutathione redox thiol status. J Biol Chem 282(30):21889–21900

    Article  CAS  Google Scholar 

  67. Jenner P (1993) Altered mitochondrial function, iron metabolism and glutathione levels in Parkinson’s disease. Acta Neurol Scand Suppl 146:6–13

    Article  CAS  Google Scholar 

  68. Murphy E, Steenbergen C (2008) Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev 88(2):581–609

    Article  CAS  Google Scholar 

  69. Dlaskova A, Hlavata L, Jezek J, Jezek P (2008) Mitochondrial complex I superoxide production is attenuated by uncoupling. Int J Biochem Cell Biol 40(10):2098–2109

    Article  CAS  Google Scholar 

  70. Oliver R III, Friday E, Turturro F, Welbourne T (2008) Troglitazone induced cytosolic acidification via extracellular signal-response kinase activation and mitochondrial depolarization: complex I proton pumping regulates ammoniagenesis in proximal tubule-like LLC-PK1 cells. Cell Physiol Biochem 22(5–6):475–486

    Article  CAS  Google Scholar 

  71. Galkin A, Brandt U (2005) Superoxide radical formation by pure complex I (NADH:ubiquinone oxidoreductase) from Yarrowia lipolytica. J Biol Chem 280(34):30129–30135

    Article  CAS  Google Scholar 

  72. Genova ML, Ventura B, Giuliano G, Bovina C, Formiggini G, Parenti Castelli G, Lenaz G (2001) The site of production of superoxide radical in mitochondrial complex I is not a bound ubisemiquinone but presumably iron-sulfur cluster N2. FEBS Lett 505(3):364–368

    Article  CAS  Google Scholar 

  73. Kushnareva Y, Murphy AN, Andreyev A (2002) Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P)+ oxidation-reduction state. Biochem J 368(pt 2):545–553

    Article  CAS  Google Scholar 

  74. Ohnishi T, Salerno JC (2005) Conformation-driven and semiquinone-gated proton-pump mechanism in the NADH-ubiquinone oxidoreductase (complex I). FEBS Lett 579(21):4555–4561

    Article  CAS  Google Scholar 

  75. Dutton PL, Moser CC, Sled VD, Daldal F, Ohnishi T (1998) A reductant-induced oxidation mechanism for complex I. Biochim Biophys Acta 1364(2):245–257

    Article  CAS  Google Scholar 

  76. Vinogradov AD (2001) Respiratory complex I: structure, redox components, and possible mechanisms of energy transduction. Biochem Biokhim 66(10):1086–1097

    Article  CAS  Google Scholar 

  77. Jafri MS, Kumar R (2014) Modeling mitochondrial function and its role in disease. Prog Mol Biol Transl Sci 123:103–125

    Article  CAS  Google Scholar 

  78. Kumar R (2012) A computational analysis of mitochondrial reactive oxygen species dynamics in cardiomyocytes. George Mason University, ProQuest Dissertations Publishing

    Google Scholar 

  79. Kumar R, Jafri MS (2011) Mechanism of reactive oxygen species generation in cardiac mitochondria a computational approach. Biophys J 100(3):460a

    Article  Google Scholar 

  80. Kumar R, Jafri MS (2013) Ionic regulation of mitochondrial ROS dynamics: a computational modeling study. Biophys J 104(2):305a

    Google Scholar 

  81. Kumar R, Jafri MS (2013) Computational analysis of reactive oxygen species generation by mitochondria resulting from substrate manipulation. Biophys J 104(2):305a

    Google Scholar 

  82. Mannella CA, Lederer WJ, Jafri MS (2013) The connection between inner membrane topology and mitochondrial function. J Mol Cell Cardiol 62:51–57

    Article  CAS  Google Scholar 

  83. Afzal N, Lederer WJ, Jafri MS, Mannella CA (2021) Effect of crista morphology on mitochondrial ATP output: a computational study. Curr Res Physiol in press

    Google Scholar 

  84. Adams R, Liu Z, Mannella CA, Lederer WJ, Jafri MS (2019) An automated method for segmenting highly convoluted mitochondrial inner membranes from electron microscopic tomograms. Biophys J 116(3):267a

    Article  Google Scholar 

  85. Mannella CA, Liu Z, Hsieh C, Afzal N, Adams RA, Jafri MS, Lederer WJ (2019) How the nanoarchitecture of cardiac muscle mitochondria affects function: lessons from computer simulations. Biophys J 116(3):155a

    Article  Google Scholar 

  86. Garcia GC, Bartol TM, Phan S, Bushong EA, Perkins G, Sejnowski TJ, Ellisman MH, Skupin A (2019) Mitochondrial morphology provides a mechanism for energy buffering at synapses. Sci Rep 9(1):18306

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsin S. Jafri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kumar, R., Jafri, M.S. (2022). Computational Modeling of Mitochondria to Understand the Dynamics of Oxidative Stress. In: Tomar, N. (eds) Mitochondria. Methods in Molecular Biology, vol 2497. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2309-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2309-1_27

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2308-4

  • Online ISBN: 978-1-0716-2309-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics