Skip to main content
Log in

Modelling mitochondrial ROS production by the respiratory chain

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

ROS (superoxide and oxygen peroxide in this paper) play a dual role as signalling molecules and strong oxidizing agents leading to oxidative stress. Their production mainly occurs in mitochondria although they may have other locations (such as NADPH oxidase in particular cell types). Mitochondrial ROS production depends in an interweaving way upon many factors such as the membrane potential, the cell type and the respiratory substrates. Moreover, it is experimentally difficult to quantitatively assess the contribution of each potential site in the respiratory chain. To overcome these difficulties, mathematical models have been developed with different degrees of complexity in order to analyse different physiological questions ranging from a simple reproduction/simulation of experimental results to a detailed model of the possible mechanisms leading to ROS production. Here, we analyse experimental results concerning ROS production including results still under discussion. We then critically review the three models of ROS production in the whole respiratory chain available in the literature and propose some direction for future modelling work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dröge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95. https://doi.org/10.1152/physrev.00018.2001

    Article  PubMed  Google Scholar 

  2. Sies H, Berndt C, Jones DP (2017) Oxidative stress. Annu Rev Biochem 86:715–748. https://doi.org/10.1146/annurev-biochem-061516-045037

    Article  CAS  PubMed  Google Scholar 

  3. Sies H (2018) On the history of oxidative stress: concept and some aspects of current development. Curr Opin Toxicol 7:122–126. https://doi.org/10.1016/j.cotox.2018.01.002

    Article  Google Scholar 

  4. Boveris A, Chance B (1973) The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 134:707–716

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Petronilli V, Costantini P, Scorrano L et al (1994) The voltage sensor of the mitochondrial permeability transition pore is tuned by the oxidation-reduction state of vicinal thiols. Increase of the gating potential by oxidants and its reversal by reducing agents. J Biol Chem 269:16638–16642

    CAS  PubMed  Google Scholar 

  6. Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24:R453–R462. https://doi.org/10.1016/j.cub.2014.03.034

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    Article  CAS  PubMed  Google Scholar 

  8. Chouchani ET, Pell VR, Gaude E et al (2014) Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515:431–435. https://doi.org/10.1038/nature13909

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Wong H-S, Benoit B, Brand MD (2019) Mitochondrial and cytosolic sources of hydrogen peroxide in resting C2C12 myoblasts. Free Radic Biol Med 130:140–150. https://doi.org/10.1016/j.freeradbiomed.2018.10.448

    Article  CAS  PubMed  Google Scholar 

  10. Brand MD (2016) Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radic Biol Med 100:14–31. https://doi.org/10.1016/j.freeradbiomed.2016.04.001

    Article  CAS  PubMed  Google Scholar 

  11. Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13. https://doi.org/10.1042/BJ20081386

    Article  CAS  PubMed  Google Scholar 

  12. Detaille D, Pasdois P, Sémont A et al (2019) An old medicine as a new drug to prevent mitochondrial complex I from producing oxygen radicals. PLoS ONE 14:e0216385. https://doi.org/10.1371/journal.pone.0216385

    Article  PubMed Central  PubMed  Google Scholar 

  13. Andreyev AY, Kushnareva YE, Murphy AN, Starkov AA (2015) Mitochondrial ROS metabolism: 10 years later. Biochem Mosc 80:517–531. https://doi.org/10.1134/S0006297915050028

    Article  CAS  Google Scholar 

  14. Bouchez C, Devin A (2019) Mitochondrial biogenesis and mitochondrial reactive oxygen species (ROS): a complex relationship regulated by the cAMP/PKA signaling pathway. Cells 8:287. https://doi.org/10.3390/cells8040287

    Article  CAS  PubMed Central  Google Scholar 

  15. Dubouchaud H, Walter L, Rigoulet M, Batandier C (2018) Mitochondrial NADH redox potential impacts the reactive oxygen species production of reverse electron transfer through complex I. J Bioenerg Biomembr 50:367–377. https://doi.org/10.1007/s10863-018-9767-7

    Article  CAS  PubMed  Google Scholar 

  16. Selivanov VA, Votyakova TV, Pivtoraiko VN et al (2011) Reactive oxygen species production by forward and reverse electron fluxes in the mitochondrial respiratory chain. PLoS Comput Biol 7:e1001115. https://doi.org/10.1371/journal.pcbi.1001115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Selivanov VA, Votyakova TV, Zeak JA et al (2009) Bistability of mitochondrial respiration underlies paradoxical reactive oxygen species generation induced by anoxia. PLoS Comput Biol 5:e1000619. https://doi.org/10.1371/journal.pcbi.1000619

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Selivanov VA, Cascante M, Friedman M et al (2012) Multistationary and oscillatory modes of free radicals generation by the mitochondrial respiratory chain revealed by a bifurcation analysis. PLoS Comput Biol 8:e1002700. https://doi.org/10.1371/journal.pcbi.1002700

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Quinlan CL, Gerencser AA, Treberg JR, Brand MD (2011) The mechanism of superoxide production by the antimycin-inhibited mitochondrial Q-cycle. J Biol Chem 286:31361–31372. https://doi.org/10.1074/jbc.M111.267898

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Bazil JN, Pannala VR, Dash RK, Beard DA (2014) Determining the origins of superoxide and hydrogen peroxide in the mammalian NADH: ubiquinone oxidoreductase. Free Radic Biol Med. https://doi.org/10.1016/j.freeradbiomed.2014.08.023

    Article  PubMed Central  PubMed  Google Scholar 

  21. Guillaud F, Dröse S, Kowald A et al (2014) Superoxide production by cytochrome bc1 complex: a mathematical model. Biochim Biophys Acta (BBA) Bioenerg 1837:1643–1652. https://doi.org/10.1016/j.bbabio.2014.05.358

    Article  CAS  Google Scholar 

  22. Grivennikova VG, Kozlovsky VS, Vinogradov AD (2017) Respiratory complex II: ROS production and the kinetics of ubiquinone reduction. Biochim Biophys Acta (BBA) Bioenerg 1858:109–117. https://doi.org/10.1016/j.bbabio.2016.10.008

    Article  CAS  Google Scholar 

  23. Quinlan CL, Orr AL, Perevoshchikova IV et al (2012) Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions. J Biol Chem 287:27255–27264. https://doi.org/10.1074/jbc.M112.374629

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Kussmaul L, Hirst J (2006) The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. PNAS 103:7607–7612. https://doi.org/10.1073/pnas.0510977103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hirst J, King MS, Pryde KR (2008) The production of reactive oxygen species by complex I. Biochem Soc Trans 36:976–980. https://doi.org/10.1042/BST0360976

    Article  CAS  PubMed  Google Scholar 

  26. Quinlan CL, Goncalves RLS, Hey-Mogensen M et al (2014) The 2-oxoacid dehydrogenase complexes in mitochondria can produce superoxide/hydrogen peroxide at much higher rates than complex I. J Biol Chem 289:8312–8325. https://doi.org/10.1074/jbc.M113.545301

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Hansford RG, Hogue BA, Mildaziene V (1997) Dependence of H2O2 formation by rat heart mitochondria on substrate availability and donor age. J Bioenerg Biomembr 29:89–95

    Article  CAS  PubMed  Google Scholar 

  28. Miwa S, St-Pierre J, Partridge L, Brand MD (2003) Superoxide and hydrogen peroxide production by Drosophila mitochondria. Free Radic Biol Med 35:938–948. https://doi.org/10.1016/S0891-5849(03)00464-7

    Article  CAS  PubMed  Google Scholar 

  29. Votyakova TV, Reynolds IJ (2001) ΔΨm-dependent and -independent production of reactive oxygen species by rat brain mitochondria. J Neurochem 79:266–277. https://doi.org/10.1046/j.1471-4159.2001.00548.x

    Article  CAS  PubMed  Google Scholar 

  30. Lambert AJ, Brand MD (2004) Inhibitors of the quinone-binding site allow rapid superoxide production from mitochondrial NADH: ubiquinone oxidoreductase (complex I). J Biol Chem 279:39414–39420. https://doi.org/10.1074/jbc.M406576200

    Article  CAS  PubMed  Google Scholar 

  31. Liu S (1997) Generating, partitioning, targeting and functioning of superoxide in mitochondria. Biosci Rep 17:259–272. https://doi.org/10.1023/A:1027328510931

    Article  CAS  PubMed  Google Scholar 

  32. Korshunov SS, Skulachev VP, Starkov AA (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett 416:15–18. https://doi.org/10.1016/S0014-5793(97)01159-9

    Article  CAS  PubMed  Google Scholar 

  33. Lambert AJ, Brand MD (2004) Superoxide production by NADH: ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane. Biochem J 382:511–517. https://doi.org/10.1042/BJ20040485

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Treberg JR, Quinlan CL, Brand MD (2011) Evidence for two sites of superoxide production by mitochondrial NADH-ubiquinone oxidoreductase (complex I). J Biol Chem 286:27103–27110. https://doi.org/10.1074/jbc.M111.252502

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Treberg JR, Brand MD (2011) A model of the proton translocation mechanism of complex I. J Biol Chem 286:17579–17584. https://doi.org/10.1074/jbc.M111.227751

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD (2002) Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem 277:44784–44790. https://doi.org/10.1074/jbc.M207217200

    Article  CAS  PubMed  Google Scholar 

  37. Ackrell BAC (2002) Cytopathies involving mitochondrial complex II. Mol Aspects Med 23:369–384. https://doi.org/10.1016/S0098-2997(02)00012-2

    Article  CAS  PubMed  Google Scholar 

  38. Siebels I, Dröse S (2013) Q-site inhibitor induced ROS production of mitochondrial complex II is attenuated by TCA cycle dicarboxylates. Biochim Biophys Acta (BBA) Bioenerg 1827:1156–1164. https://doi.org/10.1016/j.bbabio.2013.06.005

    Article  CAS  Google Scholar 

  39. Mitchell P (1976) Possible molecular mechanisms of the protonmotive function of cytochrome systems. J Theor Biol 62:327–367. https://doi.org/10.1016/0022-5193(76)90124-7

    Article  CAS  PubMed  Google Scholar 

  40. Trumpower BL (1990) The protonmotive Q cycle. Energy transduction by coupling of proton translocation to electron transfer by the cytochrome bc1 complex. J Biol Chem 265:11409–11412

    CAS  PubMed  Google Scholar 

  41. Crofts AR, Meinhardt SW, Jones KR, Snozzi M (1983) The role of the quinone pool in the cyclic electron-transfer chain of Rhodopseudomonas sphaeroides a modified Q-cycle mechanism. Biochim Biophys Acta (BBA) Bioenerg 723:202–218. https://doi.org/10.1016/0005-2728(83)90120-2

    Article  CAS  Google Scholar 

  42. Crofts AR (2004) The Q-cycle—a personal perspective. Photosynth Res 80:223–243. https://doi.org/10.1023/B:PRES.0000030444.52579.10

    Article  CAS  PubMed  Google Scholar 

  43. Crofts AR, Hong S, Wilson C et al (2013) The mechanism of ubihydroquinone oxidation at the Qo-site of the cytochrome bc1 complex. Biochim Biophys Acta (BBA) Bioenerg 1827:1362–1377. https://doi.org/10.1016/j.bbabio.2013.01.009

    Article  CAS  Google Scholar 

  44. Victoria D, Burton R, Crofts AR (2013) Role of the -PEWY-glutamate in catalysis at the Qo-site of the Cyt bc1 complex. Biochim Biophys Acta (BBA) Bioenerg 1827:365–386. https://doi.org/10.1016/j.bbabio.2012.10.012

    Article  CAS  Google Scholar 

  45. Esser L, Gong X, Yang S et al (2006) Surface-modulated motion switch: capture and release of iron–sulfur protein in the cytochrome bc1 complex. PNAS 103:13045–13050. https://doi.org/10.1073/pnas.0601149103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yu C-A, Cen X, Ma H-W et al (2008) Domain conformational switch of the iron–sulfur protein in cytochrome bc1 complex is induced by the electron transfer from cytochrome bL to bH. Biochim Biophys Acta (BBA) Bioenerg 1777:1038–1043. https://doi.org/10.1016/j.bbabio.2008.03.033

    Article  CAS  Google Scholar 

  47. Dröse S, Brandt U (2008) The mechanism of mitochondrial superoxide production by the cytochrome bc1 complex. J Biol Chem 283:21649–21654. https://doi.org/10.1074/jbc.M803236200

    Article  CAS  PubMed  Google Scholar 

  48. Osyczka A, Moser CC, Daldal F, Dutton PL (2004) Reversible redox energy coupling in electron transfer chains. Nature 427:607. https://doi.org/10.1038/nature02242

    Article  CAS  PubMed  Google Scholar 

  49. Osyczka A, Moser CC, Dutton PL (2005) Fixing the Q cycle. Trends Biochem Sci 30:176–182. https://doi.org/10.1016/j.tibs.2005.02.001

    Article  CAS  PubMed  Google Scholar 

  50. Kembro JM, Aon MA, Winslow RL et al (2013) Integrating mitochondrial energetics, redox and ROS metabolic networks: a two-compartment model. Biophys J 104:332–343. https://doi.org/10.1016/j.bpj.2012.11.3808

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Cortassa S, Aon MA, Winslow RL, O’Rourke B (2004) A mitochondrial oscillator dependent on reactive oxygen species. Biophys J 87:2060–2073. https://doi.org/10.1529/biophysj.104.041749

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Wei A-C, Aon MA, O’Rourke B et al (2011) Mitochondrial energetics, pH regulation, and ion dynamics: a computational–experimental approach. Biophys J 100:2894–2903. https://doi.org/10.1016/j.bpj.2011.05.027

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Gauthier LD, Greenstein JL, Cortassa S et al (2013) A computational model of reactive oxygen species and redox balance in cardiac mitochondria. Biophys J 105:1045–1056. https://doi.org/10.1016/j.bpj.2013.07.006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Demin OV, Kholodenko BN, Skulachev VP (1998) A model of O2.-generation in the complex III of the electron transport chain. Mol Cell Biochem 184:21–33

    Article  CAS  PubMed  Google Scholar 

  55. Demin OV, Gorianin II, Kholodenko BN, Westerhoff HV (2001) Kinetic modeling of energy metabolism and generation of active forms of oxygen in hepatocyte mitochondria. Mol Biol (Mosk) 35:1095–1104

    Article  CAS  Google Scholar 

  56. Magnus G, Keizer J (1997) Minimal model of beta-cell mitochondrial Ca2+ handling. Am J Physiol Cell Physiol 273:C717–C733. https://doi.org/10.1152/ajpcell.1997.273.2.C717

    Article  CAS  Google Scholar 

  57. Kim N, Ripple MO, Springett R (2012) Measurement of the mitochondrial membrane potential and pH gradient from the redox poise of the hemes of the bc1 complex. Biophys J 102:1194–1203. https://doi.org/10.1016/j.bpj.2012.02.003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Brown GC, Brand MD (1985) Thermodynamic control of electron flux through mitochondrial cytochrome bc1 complex. Biochem J 225:399–405. https://doi.org/10.1042/bj2250399

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Pryde KR, Hirst J (2011) Superoxide is produced by the reduced flavin in mitochondrial complex I a single, unified mechanism that applies during both forward and reverse electron transfer. J Biol Chem 286:18056–18065. https://doi.org/10.1074/jbc.M110.186841

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Borek A, Sarewicz M, Osyczka A (2008) Movement of the iron–sulfur head domain of cytochrome bc1 transiently opens the catalytic Qo site for reaction with oxygen. Biochemistry 47:12365–12370. https://doi.org/10.1021/bi801207f

    Article  CAS  PubMed  Google Scholar 

  61. Aon MA, Stanley BA, Sivakumaran V et al (2012) Glutathione/thioredoxin systems modulate mitochondrial H2O2 emission: an experimental-computational study. J Gen Physiol 139:479–491. https://doi.org/10.1085/jgp.201210772

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30:1191–1212. https://doi.org/10.1016/S0891-5849(01)00480-4

    Article  CAS  PubMed  Google Scholar 

  63. Cortassa S, Sollott SJ, Aon MA (2017) Mitochondrial respiration and ROS emission during β-oxidation in the heart: an experimental–computational study. PLoS Comput Biol 13:e1005588. https://doi.org/10.1371/journal.pcbi.1005588

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Markevich NI, Hoek JB (2015) Computational modeling analysis of mitochondrial superoxide production under varying substrate conditions and upon inhibition of different segments of the electron transport chain. Biochim Biophys Acta 1847:656–679. https://doi.org/10.1016/j.bbabio.2015.04.005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Crofts AR, Lhee S, Crofts SB et al (2006) Proton pumping in the bc1 complex: a new gating mechanism that prevents short circuits. Biochim Biophys Acta (BBA) Bioenerg 1757:1019–1034. https://doi.org/10.1016/j.bbabio.2006.02.009

    Article  CAS  Google Scholar 

  66. Batandier C, Guigas B, Detaille D et al (2006) The ROS production induced by a reverse-electron flux at respiratory-chain complex 1 is hampered by metformin. J Bioenerg Biomembr 38:33–42. https://doi.org/10.1007/s10863-006-9003-8

    Article  CAS  PubMed  Google Scholar 

  67. Hoffman DL, Brookes PS (2009) Oxygen sensitivity of mitochondrial reactive oxygen species generation depends on metabolic conditions. J Biol Chem 284:16236–16245. https://doi.org/10.1074/jbc.M809512200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Bazil JN, Beard DA, Vinnakota KC (2016) Catalytic coupling of oxidative phosphorylation, ATP demand, and reactive oxygen species generation. Biophys J 110:962–971. https://doi.org/10.1016/j.bpj.2015.09.036

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Bazil JN, Vinnakota KC, Wu F, Beard DA (2013) Analysis of the kinetics and bistability of ubiquinol: cytochrome c oxidoreductase. Biophys J 105:343–355. https://doi.org/10.1016/j.bpj.2013.05.033

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Beard DA (2005) A biophysical model of the mitochondrial respiratory system and oxidative phosphorylation. PLoS Comput Biol 1:e36. https://doi.org/10.1371/journal.pcbi.0010036

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Groen AK, Wanders RJ, Westerhoff HV et al (1982) Quantification of the contribution of various steps to the control of mitochondrial respiration. J Biol Chem 257:2754–2757

    CAS  PubMed  Google Scholar 

  72. Gellerich FN, Bohnensack R, Kunz W (1983) Control of mitochondrial respiration. The contribution of the adenine nucleotide translocator depends on the ATP- and ADP-consuming enzymes. Biochim Biophys Acta 722:381–391

    Article  CAS  PubMed  Google Scholar 

  73. Letellier T, Malgat M, Mazat JP (1993) Control of oxidative phosphorylation in rat muscle mitochondria: implications for mitochondrial myopathies. Biochim Biophys Acta 1141:58–64

    Article  CAS  PubMed  Google Scholar 

  74. Smith AC, Robinson AJ (2011) A metabolic model of the mitochondrion and its use in modelling diseases of the tricarboxylic acid cycle. BMC Syst Biol 5:102. https://doi.org/10.1186/1752-0509-5-102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Genova ML, Ventura B, Giuliano G et al (2001) The site of production of superoxide radical in mitochondrial complex I is not a bound ubisemiquinone but presumably iron–sulfur cluster N2. FEBS Lett 505:364–368. https://doi.org/10.1016/S0014-5793(01)02850-2

    Article  CAS  PubMed  Google Scholar 

  76. Kushnareva Y, Murphy AN, Andreyev A (2002) Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P)+ oxidation–reduction state. Biochem J 368:545–553. https://doi.org/10.1042/bj20021121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Nohl H, Jordan W (1986) The mitochondrial site of superoxide formation. Biochem Biophys Res Commun 138:533–539. https://doi.org/10.1016/S0006-291X(86)80529-0

    Article  CAS  PubMed  Google Scholar 

  78. Moser CC, Keske JM, Warncke K et al (1992) Nature of biological electron transfer. Nature 355:796. https://doi.org/10.1038/355796a0

    Article  CAS  PubMed  Google Scholar 

  79. Ransac S, Parisey N, Mazat J-P (2008) The loneliness of the electrons in the bc1 complex. Biochim Biophys Acta (BBA) Bioenerg 1777:1053–1059. https://doi.org/10.1016/j.bbabio.2008.05.003

    Article  CAS  Google Scholar 

  80. Ransac S, Mazat J-P (2010) How does antimycin inhibit the bc1 complex? A part-time twin. Biochim Biophys Acta (BBA) Bioenerg 1797:1849–1857. https://doi.org/10.1016/j.bbabio.2010.05.014

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Agence Nationale de la Recherche and the Conseil National de la Recherche Scientifique (CNRS). The authors wish to thank Prof. Michel Rigoulet for careful proofreading of the manuscript and constructive discussions.

Author information

Authors and Affiliations

Authors

Contributions

JPM conceived and coordinated the study and wrote the paper. SR and AD contributed to the writing of the paper, the design of the figures and the analysis of the literature. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Jean-Pierre Mazat.

Ethics declarations

Conflict of interest

The corresponding author declares no conflict of interests on behalf of all authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazat, JP., Devin, A. & Ransac, S. Modelling mitochondrial ROS production by the respiratory chain. Cell. Mol. Life Sci. 77, 455–465 (2020). https://doi.org/10.1007/s00018-019-03381-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03381-1

Keywords

Navigation