Skip to main content

Combining Phage and Yeast Cell Surface Antibody Display to Identify Novel Cell Type-Selective Internalizing Human Monoclonal Antibodies

  • Protocol
Yeast Surface Display

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1319))

Abstract

Using phage antibody display, large libraries can be generated and screened to identify monoclonal antibodies with affinity for target antigens. However, while library size and diversity is an advantage of the phage display method, there is limited ability to quantitatively enrich for specific binding properties such as affinity. One way of overcoming this limitation is to combine the scale of phage display selections with the flexibility and quantitativeness of FACS-based yeast surface display selections. In this chapter we describe protocols for generating yeast surface antibody display libraries using phage antibody display selection outputs as starting material and FACS-based enrichment of target antigen-binding clones from these libraries. These methods should be widely applicable for the identification of monoclonal antibodies with specific binding properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clackson T, Hoogenboom HR, Griffiths AD et al (1991) Making antibody fragments using phage display libraries. Nature 352:624–628. doi:10.1038/352624a0

    Article  CAS  PubMed  Google Scholar 

  2. Marks J, Hoogenboom H, Bonnert T et al (1991) By-passing immunization. Human antibodies from V-gene libraries displayed on phage. J Mol Biol 222:581–597

    Article  CAS  PubMed  Google Scholar 

  3. Hoogenboom HR, Griffiths AD, Johnson KS et al (1991) Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains. Nucleic Acids Res 19:4133–4137

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Barbas CF 3rd, Kang AS, Lerner RA et al (1991) Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc Natl Acad Sci U S A 88:7978–7982

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Gram H, Marconi LA, Barbas CF 3rd et al (1992) In vitro selection and affinity maturation of antibodies from a naive combinatorial immunoglobulin library. Proc Natl Acad Sci U S A 89:3576–3580

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Sheets M, Amersdorfer P, Finnern R, Sargent P, Lindqvist E, Schier R, Hemingsen G, Wong C, Gerhart JC, Marks JD (1998) Efficient construction of a large nonimmune phage antibody library: the production of high-affinity human single-chain antibodies to protein antigens. Proc Natl Acad Sci U S A 95:6157–6162

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Liu B, Marks JD (2000) Applying phage antibodies to proteomics: selecting single chain Fv antibodies to antigens blotted on nitrocellulose. Anal Biochem 286:119–128

    Article  CAS  PubMed  Google Scholar 

  8. Poul MA, Becerril B, Nielsen UB, Morisson P, Marks JD (2000) Selection of tumor-specific internalizing human antibodies from phage libraries. J Mol Biol 301:1149–1161

    Article  CAS  PubMed  Google Scholar 

  9. Liu B, Huang L, Sihlbom C et al (2002) Towards proteome-wide production of monoclonal antibody by phage display. J Mol Biol 315:1063–1073. doi:10.1006/jmbi.2001.5276

    Article  CAS  PubMed  Google Scholar 

  10. Ruan W, Sassoon A, An F et al (2006) Identification of clinically significant tumor antigens by selecting phage antibody library on tumor cells in situ using laser capture microdissection. Mol Cell Proteomics 5:2364–2373. doi:10.1074/mcp.M600246-MCP200

    Article  CAS  PubMed  Google Scholar 

  11. An F, Drummond DC, Wilson S et al (2008) Targeted drug delivery to mesothelioma cells using functionally selected internalizing human single-chain antibodies. Mol Cancer Ther 7:569–578

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Zhu X, Bidlingmaier S, Hashizume R et al (2010) Identification of internalizing human single-chain antibodies targeting brain tumor sphere cells. Mol Cancer Ther 9:2131–2141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Ha KD, Bidlingmaier SM, Zhang Y et al (2014) High-content analysis of antibody phage-display library selection outputs identifies tumor selective macropinocytosis-dependent rapidly internalizing antibodies. Mol Cell Proteomics. doi:10.1074/mcp.M114.039768

    PubMed Central  PubMed  Google Scholar 

  14. Boder ET, Wittrup KD (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 15:553–557

    Article  CAS  PubMed  Google Scholar 

  15. Bidlingmaier S, Liu B (2011) Identification of protein/target molecule interactions using yeast surface-displayed cDNA libraries. Methods Mol Biol 729:211–223

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Bidlingmaier S, Wang Y, Liu Y et al (2011) Comprehensive analysis of yeast surface displayed cDNA library selection outputs by exon microarray to identify novel protein-ligand interactions. Mol Cell Proteomics 10:M110.005116

    Article  PubMed Central  PubMed  Google Scholar 

  17. Bidlingmaier S, Liu B (2007) Interrogating yeast surface-displayed human proteome to identify small molecule-binding proteins. Mol Cell Proteomics 6:2012–2020

    Article  CAS  PubMed  Google Scholar 

  18. Bidlingmaier S, He J, Wang Y et al (2009) Identification of MCAM/CD146 as the target antigen of a human monoclonal antibody that recognizes both epithelioid and sarcomatoid types of mesothelioma. Cancer Res 69:1570–1577

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. VanAntwerp JJ, Wittrup KD (2000) Fine affinity discrimination by yeast surface display and flow cytometry. Biotechnol Prog 16:31–37. doi:10.1021/bp990133s

    Article  CAS  PubMed  Google Scholar 

  20. Feldhaus MJ, Siegel RW, Opresko LK et al (2003) Flow-cytometric isolation of human antibodies from a nonimmune Saccharomyces cerevisiae surface display library. Nat Biotechnol 21:163–170. doi:10.1038/nbt785

    Article  CAS  PubMed  Google Scholar 

  21. Van Deventer JA, Wittrup KD (2014) Yeast surface display for antibody isolation: library construction, library screening, and affinity maturation. Methods Mol Biol 1131:151–181. doi:10.1007/978-1-62703-992-5_10

    PubMed  Google Scholar 

  22. Bidlingmaier S, Liu B (2006) Construction and application of a yeast surface-displayed human cDNA library to identify post-translational modification-dependent protein-protein interactions. Mol Cell Proteomics 5:533–540

    Article  CAS  PubMed  Google Scholar 

  23. Bidlingmaier S, Liu B (2011) Construction of yeast surface-displayed cDNA libraries. Methods Mol Biol 729:199–210. doi:10.1007/978-1-61779-065-2_13

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Orcutt KD, Slusarczyk AL, Cieslewicz M et al (2011) Engineering an antibody with picomolar affinity to DOTA chelates of multiple radionuclides for pretargeted radioimmunotherapy and imaging. Nucl Med Biol 38:223–233. doi:10.1016/j.nucmedbio.2010.08.013

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Chao G, Lau WL, Hackel BJ et al (2006) Isolating and engineering human antibodies using yeast surface display. Nat Protoc 1:755–768. doi:10.1038/nprot.2006.94

    Article  CAS  PubMed  Google Scholar 

  26. Benatuil L, Perez JM, Belk J et al (2010) An improved yeast transformation method for the generation of very large human antibody libraries. Protein Eng Des Sel 23:155–159. doi:10.1093/protein/gzq002

    Article  CAS  PubMed  Google Scholar 

  27. Meilhoc E, Masson JM, Teissie J (1990) High efficiency transformation of intact yeast cells by electric field pulses. Biotechnology (N Y) 8:223–227

    Article  CAS  Google Scholar 

  28. O’Connell D, Becerril B, Roy-Burman A et al (2002) Phage versus phagemid libraries for generation of human monoclonal antibodies. J Mol Biol 321:49–56

    Article  PubMed  Google Scholar 

  29. Winter G, Griffiths A, Hawkins R et al (1994) Making antibodies by phage display technology. Annu Rev Immunol 12:433–455

    Article  CAS  PubMed  Google Scholar 

  30. Vaughan T, Williams A, Pritchard K et al (1996) Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nat Biotechnol 14:309–314

    Article  CAS  PubMed  Google Scholar 

  31. McCafferty J, Griffiths A, Winter G et al (1990) Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348:552–554

    Article  CAS  PubMed  Google Scholar 

  32. Liu B, Conrad F, Cooperberg MR et al (2004) Mapping tumor epitope space by direct selection of single-chain Fv antibody libraries on prostate cancer cells. Cancer Res 64:704–710

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bidlingmaier, S., Su, Y., Liu, B. (2015). Combining Phage and Yeast Cell Surface Antibody Display to Identify Novel Cell Type-Selective Internalizing Human Monoclonal Antibodies. In: Liu, B. (eds) Yeast Surface Display. Methods in Molecular Biology, vol 1319. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2748-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2748-7_3

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2747-0

  • Online ISBN: 978-1-4939-2748-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics