Skip to main content

Engineering Modular Polyketide Biosynthesis in Streptomyces Using CRISPR/Cas: A Practical Guide

  • Protocol
  • First Online:
Engineering Natural Product Biosynthesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2489))

Abstract

The CRISPR/Cas system, which has been widely applied to organisms ranging from microbes to animals, is currently being adapted for use in Streptomyces bacteria. In this case, it is notably applied to rationally modify the biosynthetic pathways giving rise to the polyketide natural products, which are heavily exploited in the medical and agricultural arenas. Our aim here is to provide the potential user with a practical guide to exploit this approach for manipulating polyketide biosynthesis, by treating key experimental aspects including vector choice, design of the basic engineering components, and trouble-shooting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. van der Heul HU, Bilyk BL, McDowall KJ, Seipke RF, van Wezel GP (2018) Regulation of antibiotic production in Actinobacteria: new perspectives from the post-genomic era. Nat Prod Rep 35:575–604. https://doi.org/10.1039/C8NP00012C

    Article  PubMed  Google Scholar 

  2. Alberti F, Corre C (2019) Editing streptomycete genomes in the CRISPR/Cas9 age. Nat Prod Rep 36:1237–1248. https://doi.org/10.1039/c8np00081f

    Article  CAS  PubMed  Google Scholar 

  3. Zhao Y, Li G, Chen Y, Lu Y (2020) Challenges and advances in genome editing technologies in Streptomyces. Biomol Ther 10:734. https://doi.org/10.3390/biom10050734

    Article  CAS  Google Scholar 

  4. Cobb RE, Wang Y, Zhao H (2015) High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth Biol 4:723–728. https://doi.org/10.1021/sb500351f

    Article  CAS  PubMed  Google Scholar 

  5. Tong Y, Charusanti P, Zhang L, Weber T, Lee SY (2015) CRISPR-Cas9 based engineering of Actinomycetal genomes. ACS Synth Biol 4:1020–1029. https://doi.org/10.1021/acssynbio.5b00038

    Article  CAS  PubMed  Google Scholar 

  6. Wlodek A, Kendrew SG, Coates NJ, Hold A, Pogwizd J, Rudder S, Sheehan LS, Higginbotham SJ, Stanley-Smith AE, Warneck T, Nur-E-Alam M, Radzom M, Martin CJ, Overvoorde L, Samborskyy M, Alt S, Heine D, Carter GT, Graziani EI, Koehn FE, McDonald L, Alanine A, Rodríguez Sarmiento RM, Chao SK, Ratni H, Steward L, Norville IH, Sarkar-Tyson M, Moss SJ, Leadlay PF, Wilkinson B, Gregory MA (2017) Diversity oriented biosynthesis via accelerated evolution of modular gene clusters. Nat Commun 8:1206. https://doi.org/10.1038/s41467-017-01344-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821. https://doi.org/10.1126/science.1225829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mougiakos I, Bosma EF, de Vos WM, van Kranenburg R, van der Oost J (2016) Next generation prokaryotic engineering: the CRISPR-Cas toolkit. Trends Biotechnol 34:575–587. https://doi.org/10.1016/j.tibtech.2016.02.004

    Article  CAS  PubMed  Google Scholar 

  9. Tong Y, Weber T, Lee SY (2019) CRISPR/Cas-based genome engineering in natural product discovery. Nat Prod Rep 36:1262–1280. https://doi.org/10.1039/c8np00089a

    Article  CAS  PubMed  Google Scholar 

  10. Bertrand C, Thibessard A, Bruand C, Lecointe F, Leblond P (2019) Bacterial NHEJ: a never-ending story. Mol Microbiol 111:1139–1151. https://doi.org/10.1111/mmi.14218

    Article  CAS  PubMed  Google Scholar 

  11. Sander JD, Joung JK (2014) CRISPR-Cas systems for genome editing, regulation and targeting. Nat Biotechnol 32:347–355. https://doi.org/10.1038/nbt.2842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345. https://doi.org/10.1038/nmeth.1318

    Article  CAS  PubMed  Google Scholar 

  13. Engler C, Kandzia R, Marillonnet S (2008) A one pot, one step, precision cloning method with high throughput capability. PLoS One 3:e3647. https://doi.org/10.1371/journal.pone.0003647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tong Y, Whitford CM, Blin K, Jørgensen TS, Weber T, Lee SY (2020) CRISPR-Cas9, CRISPRi and CRISPR-BEST-mediated genetic manipulation in streptomycetes. Nat Protoc 15:2470–2502. https://doi.org/10.1038/s41596-020-0339-z

    Article  CAS  PubMed  Google Scholar 

  15. Su L, Hotel L, Paris C, Brachmann A, Piel J, Jacob C, Aigle B, Weissman KJ (2021) Successes, surprises and pitfalls in modular polyketide synthase engineering: generation of ring-contracted stambomycins. Nat Commun. In revision. https://doi.org/10.21203/rs.3.rs-222743/v1

  16. Huang H, Zheng G, Jiang W, Hu H, Lu Y (2015) One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces. Acta Biochim Biophys Sin 47:231–243. https://doi.org/10.1093/abbs/gmv007

    Article  CAS  PubMed  Google Scholar 

  17. Mo J, Wang S, Zhang W, Li C, Deng Z, Zhang L, Qu X (2019) Efficient editing DNA regions with high sequence identity in actinomycetal genomes by a CRISPR-Cas9 system. Synth Syst Biotechnol 4:86–91. https://doi.org/10.1016/j.synbio.2019.02.004

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wang Q, Xie F, Tong Y, Habisch R, Yang B, Zhang L, Müller R, Fu C (2020) Dual-function chromogenic screening-based CRISPR/Cas9 genome editing system for actinomycetes. Appl Microbiol Biotechnol 104:225–239. https://doi.org/10.1007/s00253-019-10223-4

    Article  CAS  PubMed  Google Scholar 

  19. Wang K, Zhao QW, Liu YF, Sun CF, Chen XA, Burchmore R, Burgess K, Li YQ, Mao XM (2019) Multi-layer controls of Cas9 activity coupled with ATP synthase over-expression for efficient genome editing in Streptomyces. Front Bioeng Biotechnol 7:304. https://doi.org/10.3389/fbioe.2019.00304

    Article  PubMed  PubMed Central  Google Scholar 

  20. Li L, Wei K, Zheng G, Liu X, Chen S, Jiang W, Lu Y (2018) CRISPR-Cpf1-assisted multiplex genome editing and transcriptional repression in Streptomyces. Appl Environ Microbiol 84:e00827–e00818. https://doi.org/10.1128/AEM.00827-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yeo WL, Heng E, Tan LL, Lim YW, Lim YH, Hoon S, Zhao H, Zhang MM, Wong FT (2019) Characterization of Cas proteins for CRISPR-Cas editing in streptomycetes. Biotechnol Bioeng 116:2330–2338. https://doi.org/10.1002/bit.27021

    Article  CAS  PubMed  Google Scholar 

  22. Zhao Y, Li L, Zheng G, Jiang W, Deng Z, Wang Z, Lu Y (2018) CRISPR/dCas9-mediated multiplex gene repression in Streptomyces. Biotechnol J 13:e1800121. https://doi.org/10.1002/biot.201800121

    Article  CAS  PubMed  Google Scholar 

  23. Tong Y, Whitford CM, Robertsen HL, Blin K, Jørgensen TS, Klitgaard AK, Gren T, Jiang X, Weber T, Lee SY (2019) Highly efficient DSB-free base editing for streptomycetes with CRISPR-BEST. Proc Natl Acad Sci U S A 116:20366–20375. https://doi.org/10.1073/pnas.1913493116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhao Y, Tian J, Zheng G, Chen J, Sun C, Yang Z, Zimin AA, Jiang W, Deng Z, Wang Z, Lu Y (2020) Multiplex genome editing using a dCas9-cytidine deaminase fusion in Streptomyces. Sci China Life Sci 63:1053–1062. https://doi.org/10.1007/s11427-019-1559-y

    Article  CAS  PubMed  Google Scholar 

  25. Su L, Hôtel L, Paris C, Chepkirui C, Brachmann AO, Piel J, Jacob C, Aigle B, Weissman KJ (2022) Engineering the stambomycin modular polyketide synthase yields 37-membered mini-stambomycins. Nat Commun 13:515. https://doi.org/10.1038/s41467-022-27955-z

  26. Mali P, Esvelt KM, Church GM (2013) Cas9 as a versatile tool for engineering biology. Nat Methods 10:957–963. https://doi.org/10.1038/nmeth.2649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wilkinson CJ, Hughes-Thomas ZA, Martin CJ, Böhm I, Mironenko T, Deacon M, Wheatcroft M, Wirtz G, Staunton J, Leadlay PF (2002) Increasing the efficiency of heterologous promoters in actinomycetes. J Mol Microbiol Biotechnol 4:417–426

    CAS  PubMed  Google Scholar 

  28. Murakami T, Holt TG, Thompson CJ (1989) Thiostrepton-induced gene expression in Streptomyces lividans. J Bacteriol 171:1459–1466. https://doi.org/10.1128/jb.171.3.1459-1466.1989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yun BS, Hidaka T, Kuzuyama T, Seto H (2001) Thiopeptide non-producing Streptomyces species carry the tipA gene: a clue to its function. J Antibiot 54:375–378. https://doi.org/10.7164/antibiotics.54.375

    Article  CAS  Google Scholar 

  30. Rudolph MM, Vockenhuber MP, Suess B (2013) Synthetic riboswitches for the conditional control of gene expression in Streptomyces coelicolor. Microbiology 159:1416–1422. https://doi.org/10.1099/mic.0.067322-0

    Article  CAS  PubMed  Google Scholar 

  31. Sprinzl M (1994) Elongation factor Tu: a regulatory GTPase with an integrated effector. Trends Biochem Sci 19:245–250. https://doi.org/10.1016/0968-0004(94)90149-x

    Article  CAS  PubMed  Google Scholar 

  32. Blin K, Pedersen LE, Weber T, Lee SY (2016) CRISPy-web: an online resource to design sgRNAs for CRISPR applications. Synth Syst Biotechnol 1:118–121. https://doi.org/10.1016/j.synbio.2016.01.003

    Article  PubMed  PubMed Central  Google Scholar 

  33. Blin K, Shaw S, Tong Y, Weber T (2020) Designing sgRNAs for CRISPR-BEST base editing applications with CRISPy-web 2.0. Synth Syst Biotechnol 5:99–102. https://doi.org/10.1016/j.synbio.2020.05.005

    Article  PubMed  PubMed Central  Google Scholar 

  34. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, Medema MH, Weber T (2019) antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 47:W81–W87. https://doi.org/10.1093/nar/gkz310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang J, Zhang D, Zhu J, Liu H, Liang S, Luo Y (2020) Efficient multiplex genome editing in Streptomyces via engineered CRISPR-Cas12a systems. Front Bioeng Biotechnol 8:726. https://doi.org/10.3389/fbioe.2020.00726

    Article  PubMed  PubMed Central  Google Scholar 

  36. Najah S, Saulnier C, Pernodet JL, Bury-Moné S (2019) Design of a generic CRISPR-Cas9 approach using the same sgRNA to perform gene editing at distinct loci. BMC Biotechnol 19:18. https://doi.org/10.1186/s12896-019-0509-7

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wendt KE, Ungerer J, Cobb RE, Zhao H, Pakrasi HB (2016) CRISPR/Cas9 mediated targeted mutagenesis of the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973. Microb Cell Factories 15:115. https://doi.org/10.1186/s12934-016-0514-7

    Article  CAS  Google Scholar 

  38. Zhang JJ, Moore BS (2020) Site-directed mutagenesis of large biosynthetic gene clusters via oligonucleotide recombineering and CRISPR/Cas9 targeting. ACS Synth Biol 9:1917–1922. https://doi.org/10.1021/acssynbio.0c00265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Volff JN, Altenbuchner J (1998) Genetic instability of the Streptomyces chromosome. Mol Microbiol 27:239–246. https://doi.org/10.1046/j.1365-2958.1998.00652.x

    Article  CAS  PubMed  Google Scholar 

  40. Zhang Z, Du C, de Barsy F, Liem M, Liakopoulos A, van Wezel GP, Choi YH, Claessen D, Rozen DE (2020) Antibiotic production in Streptomyces is organized by a division of labor through terminal genomic differentiation. Sci Adv 6:eaay5781. https://doi.org/10.1126/sciadv.aay5781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Muth G (2018) The pSG5-based thermosensitive vector family for genome editing and gene expression in actinomycetes. Appl Microbiol Biotechnol 102:9067–9080. https://doi.org/10.1007/s00253-018-9334-5

    Article  CAS  PubMed  Google Scholar 

  42. Kieser T, Bibb M, Buttner M, Chater K, Hopwood D (2000) Practical Streptomyces genetics. John Innes Foundation, Norwich

    Google Scholar 

  43. Kim MK, Ha HS, Choi SU (2008) Conjugal transfer using the bacteriophage phiC31 att/int system and properties of the attB site in Streptomyces ambofaciens. Biotechnol Lett 30:695–699. https://doi.org/10.1007/s10529-007-9586-0

    Article  CAS  PubMed  Google Scholar 

  44. Gust B, Challis GL, Fowler K, Kieser T, Chater KF (2003) PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci U S A 100:1541–1546. https://doi.org/10.1073/pnas.0337542100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from the Agence Nationale de la Recherche (grant number ANR-16-CE92-0006-01, PKS STRUCTURE to K.J.W.), the Université de Lorraine, the Centre National de la Recherche Scientifique (CNRS), and the IMPACT Biomolecules project of the Lorraine Université d’Excellence (Investissements d’avenir - ANR 15-004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christophe Jacob or Kira J. Weissman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Massicard, JM., Su, L., Jacob, C., Weissman, K.J. (2022). Engineering Modular Polyketide Biosynthesis in Streptomyces Using CRISPR/Cas: A Practical Guide. In: Skellam, E. (eds) Engineering Natural Product Biosynthesis. Methods in Molecular Biology, vol 2489. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2273-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2273-5_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2272-8

  • Online ISBN: 978-1-0716-2273-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics