Skip to main content

Mapping Major Disease Resistance Genes in Soybean by Genome-Wide Association Studies

  • Protocol
  • First Online:
Genome-Wide Association Studies

Abstract

Soybean is one of the most valuable agricultural crops in the world. Besides, this legume is constantly attacked by a wide range of pathogens (fungi, bacteria, viruses, and nematodes) compromising yield and increasing production costs. One of the major disease management strategies is the genetic resistance provided by single genes and quantitative trait loci (QTL). Identifying the genomic regions underlying the resistance against these pathogens on soybean is one of the first steps performed by molecular breeders. In the past, genetic mapping studies have been widely used to discover these genomic regions. However, over the last decade, advances in next-generation sequencing technologies and their subsequent cost decreasing led to the development of cost-effective approaches to high-throughput genotyping. Thus, genome-wide association studies applying thousands of SNPs in large sets composed of diverse soybean accessions have been successfully done. In this chapter, a comprehensive review of the majority of GWAS for soybean diseases published since this approach was developed is provided. Important diseases caused by Heterodera glycines, Phytophthora sojae, and Sclerotinia sclerotiorum have been the focus of the several GWAS. However, other bacterial and fungi diseases also have been targets of GWAS. As such, this GWAS summary can serve as a guide for future studies of these diseases. The protocol begins by describing several considerations about the pathogens and bringing different procedures of molecular characterization of them. Advice to choose the best isolate/race to maximize the discovery of multiple R genes or to directly map an effective R gene is provided. A summary of protocols, methods, and tools to phenotyping the soybean panel is given to several diseases. We also give details of options of DNA extraction protocols and genotyping methods, and we describe parameters of SNP quality to soybean data. Websites and their online tools to obtain genotypic and phenotypic data for thousands of soybean accessions are highlighted. Finally, we report several tricks and tips in Subheading 4, especially related to composing the soybean panel as well as generating and analyzing the phenotype data. We hope this protocol will be helpful to achieve GWAS success in identifying resistance genes on soybean.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bandara AY, Weerasooriya DK, Bradley CA et al (2020) Dissecting the economic impact of soybean diseases in the United States over two decades. PLoS One 15:1–28

    Article  Google Scholar 

  2. Godoy CV, de Bueno AF, Gazziero DLP (2015) Brazilian soybean pest management and threats to its sustainability. Outlooks. Pest Manag 26:113–117

    Google Scholar 

  3. Wrather JA, Anderson TR, Arsyad DM et al (2001) Soybean disease loss estimates for the top ten soybean-producing countries in 1998. Can J Plant Pathol 23:115–121

    Article  Google Scholar 

  4. Gupta PK, Kulwal PL, Jaiswal V (2019) Association mapping in plants in the post-GWAS genomics era. In: Advances in genetics. Elsevier, Amsterdam, pp 75–154

    Google Scholar 

  5. Brachi B, Morris GP, Borevitz JO (2011) Genome-wide association studies in plants: the missing heritability is in the field. Genome Biol 12:1–8

    Article  Google Scholar 

  6. Han Y, Zhao X, Cao G et al (2015) Genetic characteristics of soybean resistance to HG type 0 and HG type 1.2.3.5.7 of the cyst nematode analyzed by genome-wide association mapping. BMC Genomics 16:1–11

    Article  CAS  Google Scholar 

  7. Zhao X, Teng W, Li Y et al (2017) Loci and candidate genes conferring resistance to soybean cyst nematode HG type 2.5.7. BMC Genomics 18:1–10

    Article  CAS  Google Scholar 

  8. Tran DT, Steketee CJ, Boehm JD et al (2019) Genome-wide association analysis pinpoints additional major genomic regions conferring resistance to soybean cyst nematode (Heterodera glycines Ichinohe). Front Plant Sci 10:1–13

    Article  Google Scholar 

  9. Zhang H, Li C, Davis EL et al (2016) Genome-wide association study of resistance to soybean cyst nematode (Heterodera glycines) HG type 2.5.7 in wild soybean (Glycine soja). Front Plant Sci 7:1–11

    Google Scholar 

  10. Zhang H, Song Q, Griffin JD et al (2017) Genetic architecture of wild soybean (Glycine soja) response to soybean cyst nematode (Heterodera glycines). Mol Gen Genomics 292:1257–1265

    Article  CAS  Google Scholar 

  11. Hartman GL, Rupe JC, Sikora EJ et al (2016) Compendium of soybean diseases and pests, 5th edn. The American Phytopathological Society, Saint Paul

    Book  Google Scholar 

  12. Schneider R, Rolling W, Song Q et al (2016) Genome-wide association mapping of partial resistance to Phytophthora sojae in soybean plant introductions from the Republic of Korea. BMC Genomics 17:1–14

    Article  CAS  Google Scholar 

  13. Qin J, Song Q, Shi A et al (2017) Genome-wide association mapping of resistance to Phytophthora sojae in a soybean [Glycine max (L.) merr.] germplasm panel from maturity groups IV and V. PLoS One 12:1–11

    Article  Google Scholar 

  14. Niu J, Guo N, Zhang Z et al (2018) Genome-wide SNP-based association mapping of resistance to Phytophthora sojae in soybean (Glycine max (L.) Merr). Euphytica 214:1–9

    Article  CAS  Google Scholar 

  15. Bastien M, Sonah H, Belzile F (2014) Genome wide association mapping of Sclerotinia sclerotiorum resistance in soybean with a genotyping-by-sequencing approach. Plant Genome 7:1–13

    Article  Google Scholar 

  16. Boudhrioua C, Bastien M, Torkamaneh D et al (2020) Genome-wide association mapping of Sclerotinia sclerotiorum resistance in soybean using whole-genome resequencing data. BMC Plant Biol 20:195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Maldonado dos Santos JV, Ferreira EGC, de Lima Passianotto AL et al (2019) Association mapping of a locus that confers southern stem canker resistance in soybean and SNP marker development. BMC Genomics 20:1–13

    Article  CAS  Google Scholar 

  18. Alekcevetch JC, de Lima Passianotto AL, Ferreira EGC et al (2021) Genome-wide association study for resistance to the Meloidogyne javanica causing root-knot nematode in soybean. Theor Appl Genet 134:777–792

    Article  CAS  PubMed  Google Scholar 

  19. de Lima Passianotto AL, Sonah H, Dias WP et al (2017) Genome-wide association study for resistance to the southern root-knot nematode (Meloidogyne incognita) in soybean. Mol Breed 37:1–11

    CAS  Google Scholar 

  20. Chang H-X, Lipka AE, Domier LL et al (2016) Characterization of disease resistance loci in the USDA soybean germplasm collection using genome-wide association studies. Phytopathology 106:1139–1151

    Article  CAS  PubMed  Google Scholar 

  21. Huang J, Guo N, Li Y et al (2016) Phenotypic evaluation and genetic dissection of resistance to Phytophthora sojae in the Chinese soybean mini core collection. BMC Genet 17:1–14

    Article  CAS  Google Scholar 

  22. Ludke WH, Schuster I, da Silva FL et al (2019) SNP markers associated with soybean partial resistance to Phytophthora sojae. Crop Breed Appl Biotechnol 19:31–39

    Article  CAS  Google Scholar 

  23. Rolling W, Lake R, Dorrance AE et al (2020) Genome-wide association analyses of quantitative disease resistance in diverse sets of soybean [Glycine max (L.) Merr.] plant introductions. PLoS One 15:1–28

    Article  CAS  Google Scholar 

  24. Van K, Rolling W, Biyashev RM et al (2020) Mining germplasm panels and phenotypic datasets to identify loci for resistance to Phytophthora sojae in soybean. Plant Genome 14(1):e20063

    PubMed  Google Scholar 

  25. Zhao X, Bao D, Wang W et al (2020) Loci and candidate gene identification for soybean resistance to Phytophthora root rot race 1 in combination with association and linkage mapping. Mol Breed 40:1–12

    Article  CAS  Google Scholar 

  26. Zhao X, Han Y, Li Y et al (2015) Loci and candidate gene identification for resistance to Sclerotinia sclerotiorum in soybean (Glycine max L. Merr.) via association and linkage maps. Plant J 82:245–255

    Article  CAS  PubMed  Google Scholar 

  27. Moellers TC, Singh A, Zhang J et al (2017) Main and epistatic loci studies in soybean for Sclerotinia sclerotiorum resistance reveal multiple modes of resistance in multi-environments. Sci Rep 7:1–13

    Article  CAS  Google Scholar 

  28. Wei W, Mesquita ACO, Figueiró AA et al (2017) Genome-wide association mapping of resistance to a Brazilian isolate of Sclerotinia sclerotiorum in soybean genotypes mostly from Brazil. BMC Genomics 18:1–16

    Article  Google Scholar 

  29. Wen Z, Tan R, Zhang S et al (2018) Integrating GWAS and gene expression data for functional characterization of resistance to white mould in soya bean. Plant Biotechnol J 16:1825–1835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sun M, Jing Y, Zhao X et al (2020) Genome-wide association study of partial resistance to sclerotinia stem rot of cultivated soybean based on the detached leaf method. PLoS One 15:1–15

    Google Scholar 

  31. Rincker K, Lipka AE, Diers BW (2016) Genome-wide association study of brown stem rot resistance in soybean across multiple populations. Plant Genome 9:1–11

    Article  Google Scholar 

  32. Zatybekov A, Abugalieva S, Didorenko S et al (2018) GWAS of a soybean breeding collection from south east and South Kazakhstan for resistance to fungal diseases. Vavilov J Genet Breed 22:536–543

    Article  Google Scholar 

  33. Zhang C, Zhao X, Qu Y et al (2019) Loci and candidate genes in soybean that confer resistance to Fusarium graminearum. Theor Appl Genet 132:431–441

    Article  CAS  PubMed  Google Scholar 

  34. Coser SM, Reddy RVC, Zhang J et al (2017) Genetic architecture of charcoal rot (Macrophomina phaseolina) resistance in soybean revealed using a diverse panel. Front Plant Sci 8:1–12

    Article  Google Scholar 

  35. Lin F, Wani SH, Collins PJ et al (2020) QTL mapping and GWAS for identification of loci conferring partial resistance to Pythium sylvaticum in soybean (Glycine max (L.) Merr). Mol Breed 40:1–11

    Article  CAS  Google Scholar 

  36. Vuong TD, Sonah H, Meinhardt CG et al (2015) Genetic architecture of cyst nematode resistance revealed by genome-wide association study in soybean. BMC Genomics 16:1–13

    Article  CAS  Google Scholar 

  37. Zhou Z, Jiang Y, Wang Z et al (2015) Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol 33:408–414

    Article  CAS  PubMed  Google Scholar 

  38. Ravelombola WS, Qin J, Shi A et al (2020) Genome-wide association study and genomic selection for tolerance of soybean biomass to soybean cyst nematode infestation. PLoS One 15:1–20

    Article  CAS  Google Scholar 

  39. Vinholes P, Rosado RDS, Borém A et al (2020) SNP-based haplotypes associated with Meloidogyne javanica resistance in Brazilian soybean germplasm. Agron J:agj2.20554

    Google Scholar 

  40. Che Z, Yan H, Liu H et al (2020) Genome-wide association study for soybean mosaic virus SC3 resistance in soybean. Mol Breed 40:1–14

    Article  CAS  Google Scholar 

  41. Che Z, Liu H, Yi F et al (2017) Genome-wide association study reveals novel loci for SC7 resistance in a soybean mutant panel. Front Plant Sci 8:1–12

    Article  Google Scholar 

  42. Stefanova P, Taseva M, Georgieva T et al (2013) A modified CTAB method for DNA extraction from soybean and meat products. Biotechnol Biotechnol Equip 27:3803–3810

    Article  CAS  Google Scholar 

  43. Doyle J, Doyle J (1987) A rapid isolation procedure for small amounts of leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  44. Elshire RJ, Glaubitz JC, Sun Q et al (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:1–10

    Article  CAS  Google Scholar 

  45. Torkamaneh D, Boyle B, St-Cyr J et al (2020) NanoGBS: a miniaturized procedure for GBS library preparation. Front Genet 11:1–8

    Article  CAS  Google Scholar 

  46. Torkamaneh D, Laroche J, Boyle B et al (2021) A bumper crop of SNPs in soybean through high-density genotyping-by-sequencing (HD-GBS). Plant Biotechnol J:1–3

    Google Scholar 

  47. Song Q, Hyten DL, Jia G et al (2013) Development and evaluation of SoySNP50K, a high-density genotyping array for soybean. PLoS One 8:1–12

    CAS  Google Scholar 

  48. Song Q, Yan L, Quigley C et al (2020) Soybean BARCSoySNP6K: an assay for soybean genetics and breeding research. Plant J 104:800–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lee YG, Jeong N, Kim JH et al (2015) Development, validation and genetic analysis of a large soybean SNP genotyping array. Plant J 81:625–636

    Article  CAS  PubMed  Google Scholar 

  50. Wang J, Chu S, Zhang H et al (2016) Development and application of a novel genome-wide SNP array reveals domestication history in soybean. Sci Rep 6:1–10

    CAS  Google Scholar 

  51. Guo Z, Wang H, Tao J et al (2019) Development of multiple SNP marker panels affordable to breeders through genotyping by target sequencing (GBTS) in maize. Mol Breed 39:1–12

    Article  CAS  Google Scholar 

  52. Yang S, Fresnedo-Ramírez J, Wang M et al (2016) A next-generation marker genotyping platform (AmpSeq) in heterozygous crops: a case study for marker-assisted selection in grapevine. Hortic Res 3:1–12

    Article  CAS  Google Scholar 

  53. Zhang J, Yang J, Zhang L et al (2020) A new SNP genotyping technology target SNP-seq and its application in genetic analysis of cucumber varieties. Sci Rep 10:1–11

    CAS  Google Scholar 

  54. dos Santos JVM, Yamanaka N, Marcelino-Guimarães FC et al (2018) Molecular mapping of quantitative trait loci for agronomical traits in soybean under Asian soybean rust infection. Crop Breed Appl Biotechnol 18:390–398

    Article  CAS  Google Scholar 

  55. Song Q, Hyten DL, Jia G et al (2015) Fingerprinting soybean germplasm and its utility in genomic research. G3 (Bethesda) 5:1999–2006

    Article  Google Scholar 

  56. Jeong SC, Moon JK, Park SK et al (2019) Genetic diversity patterns and domestication origin of soybean. Theor Appl Genet 132:1179–1193

    Article  CAS  PubMed  Google Scholar 

  57. Liu Y, Du H, Li P et al (2020) Pan-genome of wild and cultivated soybeans. Cell 182:162–176

    Article  CAS  PubMed  Google Scholar 

  58. Torkamaneh D, Laroche J, Valliyodan B et al (2020) Soybean (Glycine max) haplotype map (GmHapMap): a universal resource for soybean translational and functional genomics. Plant Biotechnol J:1–11

    Google Scholar 

  59. Brown AV, Conners SI, Huang W et al (2021) A new decade and new data at SoyBase, the USDA-ARS soybean genetics and genomics database. Nucleic Acids Res 49:D1496–D1501

    Article  CAS  PubMed  Google Scholar 

  60. Valliyodan B, Brown AV, Wang J et al (2021) Genetic variation among 481 diverse soybean accessions, inferred from genomic re-sequencing. Sci Data 8:1–9

    Article  CAS  Google Scholar 

  61. Torkamaneh D, Laroche J, Tardivel A et al (2018) Comprehensive description of genomewide nucleotide and structural variation in short-season soya bean. Plant Biotechnol J 16:749–759

    Article  CAS  PubMed  Google Scholar 

  62. Torkamaneh D, Laroche J, Bastien M et al (2017) Fast-GBS: a new pipeline for the efficient and highly accurate calling of SNPs from genotyping-by-sequencing data. BMC Bioinform 18:1–7

    Article  CAS  Google Scholar 

  63. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform 25:1754–1760

    CAS  Google Scholar 

  64. McKenna A, Hanna M, Banks E et al (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Danecek P, Auton A, Abecasis G et al (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Bradbury PJ, Zhang Z, Kroon DE et al (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  68. Scheet P, Stephens M (2006) A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotypic phase. Am J Hum Genet 78:629–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pook T, Mayer M, Geibel J et al (2020) Improving imputation quality in beagle for crop and livestock data. G3 (Bethesda) 10:177–188

    Article  Google Scholar 

  70. Lipka AE, Tian F, Wang Q et al (2012) GAPIT: genome association and prediction integrated tool. Bioinformatics 28:2397–2399

    Article  CAS  PubMed  Google Scholar 

  71. Yin L, Zhang H, Tang Z et al (2021) rMVP: a memory-efficient, visualization-enhanced, and parallel-accelerated tool for genome-wide association study. Genomics Proteomics Bioinformatics

    Google Scholar 

  72. Thorvaldsdottir H, Robinson JT, Mesirov JP (2013) Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14:178–192

    Article  CAS  PubMed  Google Scholar 

  73. Chang CC, Chow CC, Tellier LCAM et al (2015) Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4:1–7

    Article  CAS  Google Scholar 

  74. Barrett JC, Fry B, Maller J et al (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265

    Article  CAS  PubMed  Google Scholar 

  75. Meyers BC, Kozik A, Griego A et al (2003) Genome-wide analysis of NBS-LRR–encoding genes in Arabidopsis. Plant Cell 15:809–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kang Y, Kim K, Shim S et al (2012) Genome-wide mapping of NBS-LRR genes and their association with disease resistance in soybean. BMC Plant Biol 12:1–13

    Article  CAS  Google Scholar 

  77. Cingolani P, Platts A, Wang LL et al (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly (Austin) 6:80–92

    Article  CAS  Google Scholar 

  78. Pioli RN, Morandi EN, Martínez MC et al (2003) Morphologic, molecular, and pathogenic characterization of Diaporthe phaseolorum variability in the core soybean-producing area of Argentina. Phytopathology 93:136–146

    Article  PubMed  Google Scholar 

  79. Brumer BB, Lopes-Caitar VS, Chicowski AS et al (2018) Morphological and molecular characterization of Diaporthe (anamorph Phomopsis) complex and pathogenicity of Diaporthe aspalathi isolates causing stem canker in soybean. Eur J Plant Pathol 151:1009–1025

    Article  CAS  Google Scholar 

  80. Hosseini B, El-Hasan A, Link T et al (2020) Analysis of the species spectrum of the Diaporthe/Phomopsis complex in European soybean seeds. Mycol Prog 19:455–469

    Article  Google Scholar 

  81. Zhang AW, Riccioni L, Pedersen WL et al (1998) Molecular identification and phylogenetic grouping of Diaporthe phaseolorum and Phomopsis longicolla isolates from soybean. Phytopathology 88:1306–1314

    Article  CAS  PubMed  Google Scholar 

  82. Tegli S, Sereni A, Surico G (2002) PCR-based assay for the detection of Curtobacterium flaccumfaciens pv. flaccumfaciens in bean seeds. Lett Appl Microbiol 35:331–337

    Article  CAS  PubMed  Google Scholar 

  83. Soares RM, Fantinato GGP, Ferreira EGC et al (2018) Plant-to-seed transmission of Curtobacterium flaccumfaciens pv. flaccumfaciens on soybean. Trop Plant Pathol 43:376–379

    Article  Google Scholar 

  84. Silva DCG, Yamanaka N, Brogin RL et al (2008) Molecular mapping of two loci that confer resistance to Asian rust in soybean. Theor Appl Genet 117:57–63

    Article  CAS  PubMed  Google Scholar 

  85. Yamanaka N, Resources B, Division P (2016) Laboratory manual for the studies on soybean rust resistance 22:0–28

    Google Scholar 

  86. Kim DH, Kim KH, Van K et al (2010) Fine mapping of a resistance gene to bacterial leaf pustule in soybean. Theor Appl Genet 120:1443–1450

    Article  CAS  PubMed  Google Scholar 

  87. Kim KH, Kang YJ, Kim DH et al (2011) RNA-Seq analysis of a soybean near-isogenic line carrying bacterial leaf pustule-resistant and -susceptible alleles. DNA Res 18:483–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Staskawicz BJ, Dahlbeck D, Keen NT (1984) Cloned avirulence gene of Pseudomonas syringae pv. glycinea determines race-specific incompatibility on Glycine max (L.) Merr. Proc Natl Acad Sci U S A 81:6024–6028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Karthikeyan A, Li K, Jiang H et al (2017) Inheritance, fine-mapping, and candidate gene analyses of resistance to soybean mosaic virus strain SC5 in soybean. Mol Gen Genomics 292:811–822

    Article  CAS  Google Scholar 

  90. Barreto da Silva F, Muller C, Bello VH et al (2020) Effects of cowpea mild mottle virus on soybean cultivars in Brazil. PeerJ 8:1–17

    Article  CAS  Google Scholar 

  91. Tyler JM (1996) Characterization of stem canker resistance in “Hutcheson” soybean. Crop Sci 36:591–593

    Article  Google Scholar 

  92. Campbell MA, Li Z, Buck JW (2017) Development of southern stem canker disease on soybean seedlings in the greenhouse using a modified toothpick inoculation assay. Crop Prot 100:57–64

    Article  Google Scholar 

  93. Li S, Hartman GL, Boykin DL (2010) Aggressiveness of Phomopsis longicolla and other Phomopsis spp. on soybean. Plant Dis 94:1035–1040

    Article  PubMed  Google Scholar 

  94. Li S, Song Q, Martins AM et al (2016) Draft genome sequence of Diaporthe aspalathi isolate MS-SSC91, a fungus causing stem canker in soybean. Genomics Data 7:262–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ryley MJ, Obst NR, Irwin JAG et al (1998) Changes in the racial composition of Phytophthora sojae in Australia between 1979 and 1996. Plant Dis 82:1048–1054

    Article  CAS  PubMed  Google Scholar 

  96. Zhong C, Sun S, Yao L et al (2018) Fine mapping and identification of a novel Phytophthora root rot resistance locus RpsZS18 on chromosome 2 in soybean. Front Plant Sci 9:1–14

    Article  Google Scholar 

  97. Lebreton A, Labbé C, De RM et al (2018) Development of a simple hydroponic assay to study vertical and horizontal resistance of soybean and Pathotypes of Phytophthora sojae. Plant Dis 102:114–123

    Article  CAS  PubMed  Google Scholar 

  98. Hartman GL, Huang YH, Nelson RL et al (1997) Germplasm evaluation of glycine max for resistance to Fusarium solani, the causal organism of sudden death syndrome. Plant Dis 81:515–518

    Article  CAS  PubMed  Google Scholar 

  99. Scandiani MM, Ruberti DS, Giorda LM et al (2011) Comparison of inoculation methods for characterizing relative aggressiveness of two soybean sudden-death syndrome pathogens, Fusarium virguliforme and F. tucumaniae. Trop Plant Pathol 36:133–140

    Article  Google Scholar 

  100. Willmot B, Nickell CD, Merr L (1989) Genetic analysis of brown stem rot resistance in soybean. Crop Breed Genet Cytol 674:672–674

    Google Scholar 

  101. Hughes TJ, Kurtzweil NC, Diers BW et al (2004) Resistance to brown stem rot in soybean germ plasm with resistance to the soybean cyst nematode. Plant Dis 88:761–768

    Article  CAS  PubMed  Google Scholar 

  102. Bradley CA, Hartman GL, Nelson RL et al (2001) Response of ancestral soybean lines and commercial cultivars to rhizoctonia root and hypocotyl rot. Plant Dis 85:1091–1095

    Article  CAS  PubMed  Google Scholar 

  103. Atamian HS, Roberts PA, Kaloshian I (2012) High and low throughput screens with root-knot nematodes Meloidogyne spp. J Vis Exp 61:1–5

    Google Scholar 

  104. Nutter FW, Esker PD, Netto RAC (2006) Disease assessment concepts and the advancements made in improving the accuracy and precision of plant disease data. Eur J Plant Pathol 115:95–103

    Article  Google Scholar 

  105. Franceschi VT, Alves KS, Mazaro SM et al (2020) A new standard area diagram set for assessment of severity of soybean rust improves accuracy of estimates and optimizes resource use. Plant Pathol 69:495–505

    Article  Google Scholar 

  106. Pham A-T, Harris DK, Buck J et al (2015) Fine mapping and characterization of candidate genes that control resistance to Cercospora sojina K. Hara in two soybean germplasm accessions. PLoS One 10:3–20

    Article  Google Scholar 

  107. Kawashima CG, Guimarães GA, Nogueira SR et al (2016) A pigeonpea gene confers resistance to Asian soybean rust in soybean. Nat Biotechnol 34:661–665

    Article  CAS  PubMed  Google Scholar 

  108. Wu M, Liu Y-N, Zhang C et al (2019) Molecular mapping of the gene(s) conferring resistance to soybean mosaic virus and bean common mosaic virus in the soybean cultivar Raiden. Theor Appl Genet 132:3101–3114

    Article  CAS  PubMed  Google Scholar 

  109. Lin J, Lan Z, Hou W et al (2020) Identification and fine-mapping of a genetic locus underlying soybean tolerance to SMV infections. Plant Sci 292:1–9

    Article  CAS  Google Scholar 

  110. Yorinori JT (1996) Cancro da haste da soja: epidemiologia e controle. Embrapa-Soja Circ Técnica 14:1–75

    Google Scholar 

  111. Hamawaki OT, Hamawaki RL, Nogueira APO et al (2019) Evaluation of soybean breeding lineages to new sources of root-knot nematode resistance. Ciência e Agrotecnologia 43:1–8

    Article  CAS  Google Scholar 

  112. Sonah H, Bastien M, Iquira E et al (2013) An improved genotyping by sequencing (GBS) approach offering increased versatility and efficiency of SNP discovery and genotyping. PLoS One 8:1–9

    Article  CAS  Google Scholar 

  113. Torkamaneh D, Laroche J, Belzile F (2016) Genome-wide SNP calling from genotyping by sequencing (GBS) data: a comparison of seven pipelines and two sequencing technologies. PLoS One 11:1–14

    Article  CAS  Google Scholar 

  114. Torkamaneh D, Chalifour FP, Beauchamp CJ et al (2020) Genome-wide association analyses reveal the genetic basis of biomass accumulation under symbiotic nitrogen fixation in African soybean. Theor Appl Genet 133:665–676

    Article  CAS  PubMed  Google Scholar 

  115. Boudhrioua C, Bastien M, Torkamaneh D et al (2020) Genome-wide association mapping of Sclerotinia sclerotiorum resistance in soybean using whole-genome resequencing data. BMC Plant Biol 20:1–9

    Article  CAS  Google Scholar 

  116. St-Amour VTB, Mimee B, Torkamaneh D et al (2020) Characterizing resistance to soybean cyst nematode in PI 494182, an early maturing soybean accession. Crop Sci 60:2053–2069

    Article  CAS  Google Scholar 

  117. Gao Y, Wang W, Zhang T et al (2018) Out of water: the ORI in and earl diversification of plant R-genes. Plant Physiol 177:82–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francismar Corrêa Marcelino-Guimarães .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ferreira, E.G.C., Marcelino-Guimarães, F.C. (2022). Mapping Major Disease Resistance Genes in Soybean by Genome-Wide Association Studies. In: Torkamaneh, D., Belzile, F. (eds) Genome-Wide Association Studies. Methods in Molecular Biology, vol 2481. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2237-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2237-7_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2236-0

  • Online ISBN: 978-1-0716-2237-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics