Skip to main content

Generation of Endogenously Tagged Membrane Trafficking Regulators Using CRISPR Genome Editing

  • Protocol
  • First Online:
Membrane Trafficking

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2473))

  • 1153 Accesses

Abstract

Vesicle trafficking entails packaging and transport of membrane-associated proteins to their target membranes, and recycling or degradation of endocytosed proteins. Biochemical and cell biological studies of vesicle trafficking often require the introduction of epitope tags or fluorescent protein markers for protein purification and tracking in cells. Previously, such tagging experiments in mammalian cells mainly used overexpression systems, which could lead to artifacts. Abnormally high expression levels also prevent us from studying individual vesicle trafficking events with precision. With the advent of CRISPR technologies, epitope tags and fluorescent proteins can now be introduced into endogenous proteins in almost any cell type that are proliferating in culture. This chapter describes approaches for inserting tags at the endogenous loci of genes, with the vesicle tethering protein complex, exocyst, as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rodriguez-Boulan E, Kreitzer G, Müsch A (2005) Organization of vesicular trafficking in epithelia. Nat Rev Mol Cell Biol 6(3):233–247

    Article  CAS  Google Scholar 

  2. Orlando K, Guo W (2009) Membrane organization and dynamics in cell polarity. Cold Spring Harb Perspect Biol 1(5):a001321

    Article  Google Scholar 

  3. Booher KR, Kaiser P (2008) A PCR-based strategy to generate yeast strains expressing endogenous levels of amino-terminal epitope-tagged proteins. Biotechnol J 3(4):524–529. https://doi.org/10.1002/biot.200800012

    Article  CAS  PubMed  Google Scholar 

  4. Vavouri T, Semple JI, Garcia-Verdugo R, Lehner B (2009) Intrinsic protein disorder and interaction promiscuity are widely associated with dosage sensitivity. Cell 138(1):198–208. https://doi.org/10.1016/j.cell.2009.04.029

    Article  CAS  PubMed  Google Scholar 

  5. Birchler JA, Veitia RA (2012) Gene balance hypothesis: connecting issues of dosage sensitivity across biological disciplines. Proc Natl Acad Sci U S A 109(37):14746–14753

    Article  CAS  Google Scholar 

  6. Doyon JB, Zeitler B, Cheng J et al (2011) Rapid and efficient clathrin-mediated endocytosis revealed in genome-edited mammalian cells. Nat Cell Biol 13(3):331–337. https://doi.org/10.1038/ncb2175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rivera-Molina F, Toomre D (2013) Live-cell imaging of exocyst links its spatiotemporal dynamics to various stages of vesicle fusion. J Cell Biol 201:673–680. https://doi.org/10.1083/jcb.201212103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yu J (2016) Single-molecule studies in live cells. Annu Rev Phys Chem 67:565–585. https://doi.org/10.1146/annurev-physchem-040215-112451

    Article  CAS  PubMed  Google Scholar 

  9. Chen B, Zou W, Xu H et al (2018) Efficient labeling and imaging of protein-coding genes in living cells using CRISPR-tag. Nat Commun 9(1):5065. https://doi.org/10.1038/s41467-018-07498-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ahmed SM, Nishida-Fukuda H, Li Y et al (2018) Exocyst dynamics during vesicle tethering and fusion. Nat Commun 9:5140. https://doi.org/10.1038/s41467-018-07467-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Doudna JA, Charpentier E (2014) The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1258096

    Article  Google Scholar 

  12. Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32(4):347–355

    Article  CAS  Google Scholar 

  13. Jiang F, Doudna JA (2017) CRISPR-Cas9 structures and mechanisms. Annu Rev Biophys 46:505–529

    Article  CAS  Google Scholar 

  14. Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821. https://doi.org/10.1126/science.1225829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Deltcheva E, Chylinski K, Sharma CM et al (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471(7340):602–607. https://doi.org/10.1038/nature09886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chylinski K, Le Rhun A, Charpentier E (2013) The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems. RNA Biol 10(5):726–737. https://doi.org/10.4161/rna.24321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu M, Rehman S, Tang X et al (2019) Methodologies for improving HDR efficiency. Front Genet 9:691

    Article  Google Scholar 

  18. Rodriguez EA, Campbell RE, Lin JY et al (2017) The growing and glowing toolbox of fluorescent and photoactive proteins. Trends Biochem Sci 42(2):111–129

    Article  CAS  Google Scholar 

  19. Erdmann RS, Baguley SW, Richens JH et al (2019) Labeling strategies matter for super-resolution microscopy: a comparison between HaloTags and SNAP-tags. Cell Chem Biol 26(4):584–592.e6. https://doi.org/10.1016/j.chembiol.2019.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. England CG, Luo H, Cai W (2015) HaloTag technology: a versatile platform for biomedical applications. Bioconjug Chem 26(6):975–986. https://doi.org/10.1021/acs.bioconjchem.5b00191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826. https://doi.org/10.1126/science.1232033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jao LE, Wente SR, Chen W (2013) Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci U S A 110(34):13904–13909. https://doi.org/10.1073/pnas.1308335110

    Article  PubMed  PubMed Central  Google Scholar 

  23. Evans PD, Cook SN, Riggs PD, Noren CJ (1995) LITMUS(TM): multipurpose cloning vectors with a novel system for bidirectional in vitro transcription. BioTechniques 19(1):130–135

    CAS  PubMed  Google Scholar 

  24. Roberts B, Haupt A, Tucker A et al (2017) Systematic gene tagging using CRISPR/Cas9 in human stem cells to illuminate cell organization. Mol Biol Cell 28(21):2854–2874. https://doi.org/10.1091/mbc.E17-03-0209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Maruyama T, Dougan SK, Truttmann MC et al (2015) Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol 33(5):538–542. https://doi.org/10.1038/nbt.3190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chu VT, Weber T, Wefers B et al (2015) Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol 33(5):543–548. https://doi.org/10.1038/nbt.3198

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank Dr. Ian Macara, Dr. Loic Fort, and Christian de Caestecker for their comments and insights on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Mukhtar Ahmed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ahmed, S.M. (2022). Generation of Endogenously Tagged Membrane Trafficking Regulators Using CRISPR Genome Editing. In: Shen, J. (eds) Membrane Trafficking. Methods in Molecular Biology, vol 2473. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2209-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2209-4_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2208-7

  • Online ISBN: 978-1-0716-2209-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics