Skip to main content

Application of RNAi Technology and Fluorescent Protein Markers to Study Membrane Traffic in C. elegans

  • Protocol
  • First Online:
Exocytosis and Endocytosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1174))

Abstract

RNA interference (RNAi) is a powerful tool to study the intracellular membrane transport and membrane organelle behavior in the nematode Caenorhabditis elegans. This model organism has gained popularity in the trafficking field because of its relative simplicity, yet being multicellular. C. elegans is fully sequenced and has an annotated genome, it is easy to maintain, and a growing number of transgenic strains bearing markers for different membrane compartments are available. C. elegans is particularly well suited for protein downregulation by RNAi because of the simple but efficient methods of dsRNA delivery. The phenomenon of systemic RNAi in the worm further facilitates this approach. In this chapter we describe methods and applications of RNAi in the field of membrane traffic. We summarize the fluorescent markers used as a readout for the effects of gene knockdown in different cells and tissues and give details for data acquisition and analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dickinson DJ, Ward JD, Reiner DJ, Goldstein B (2013) Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat Methods 10:1028–1034

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Robert VJP (2012) Engineering the Caenorhabditis elegans genome by Mos1-induced transgene-instructed gene conversion. Methods Mol Biol 859:189–201

    Article  CAS  PubMed  Google Scholar 

  3. Timmons L (2006) Delivery methods for RNA interference in C. elegans. Methods Mol Biol 351:119–125

    CAS  PubMed  Google Scholar 

  4. Ohkumo T, Masutani C, Eki T, Hanaoka F (2008) Use of RNAi in C. elegans. Methods Mol Biol 442:129–137

    Article  CAS  PubMed  Google Scholar 

  5. Poteryaev D, Squirrell JM, Campbell JM, White JG, Spang A (2005) Involvement of the actin cytoskeleton and homotypic membrane fusion in ER dynamics in Caenorhabditis elegans. Mol Biol Cell 16:2139–2153

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Lehner BB, Tischler JJ, Fraser AGA (2005) RNAi screens in Caenorhabditis elegans in a 96-well liquid format and their application to the systematic identification of genetic interactions. CORD Conf Proc 1:1617–1620

    Google Scholar 

  7. Isik M, Berezikov E (2013) Biolistic transformation of Caenorhabditis elegans. Methods Mol Biol 940:77–86

    CAS  PubMed  Google Scholar 

  8. Fares H, Grant B (2002) Deciphering endocytosis in Caenorhabditis elegans. Traffic 3:11–19

    Article  PubMed  Google Scholar 

  9. Koushika SP, Nonet ML (2000) Sorting and transport in C. elegans: a model system with a sequenced genome. Curr Opin Cell Biol 12:517–523

    Article  CAS  PubMed  Google Scholar 

  10. Grant B, Hirsh D (1999) Receptor-mediated endocytosis in the Caenorhabditis elegans oocyte. Mol Biol Cell 10:4311–4326

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Chen C-H, Schweinsberg PJ, Vashist S, Mareiniss DP, Lambie EJ, Grant BD (2006) RAB-10 is required for endocytic recycling in the Caenorhabditis elegans intestine. Mol Biol Cell 17:1286–1297

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Liégeois S, Benedetto A, Garnier J-M, Schwab Y, Labouesse M (2006) The V0-ATPase mediates apical secretion of exosomes containing Hedgehog-related proteins in Caenorhabditis elegans. J Cell Biol 173:949–961

    Article  PubMed Central  PubMed  Google Scholar 

  13. Skop AR, Bergmann D, Mohler WA, White JG (2001) Completion of cytokinesis in C. elegans requires a brefeldin A-sensitive membrane accumulation at the cleavage furrow apex. Curr Biol 11:735–746

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Kim E, Sun L, Gabel CV, Fang-Yen C (2013) Long-term imaging of Caenorhabditis elegans using nanoparticle-mediated immobilization. PLoS One 8:e53419

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Ackema KB, Sauder U, Solinger JA, Spang A (2013) The ArfGEF GBF-1 is required for ER structure, secretion and endocytic transport in C. elegans. PLoS ONE 8:e67076

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Paupard MC, Miller A, Grant B, Hirsh D, Hall DH (2001) Immuno-EM localization of GFP-tagged yolk proteins in C. elegans using microwave fixation. J Histochem Cytochem 49:949–956

    Article  CAS  PubMed  Google Scholar 

  17. Witte K, Schuh AL, Hegermann J et al (2011) TFG-1 function in protein secretion and oncogenesis. Nat Cell Biol 13:550–558

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Grant B, Zhang Y, Paupard MC, Lin SX, Hall DH, Hirsh D (2001) Evidence that RME-1, a conserved C. elegans EH-domain protein, functions in endocytic recycling. Nat Cell Biol 3:573–579

    Article  CAS  PubMed  Google Scholar 

  19. Calixto A, Chelur D, Topalidou I, Chen X, Chalfie M (2010) Enhanced neuronal RNAi in C. elegans using SID-1. Nat Methods 7:554–559

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Ahringer J (2006) Reverse genetics. WormBook.1.47.1

    Google Scholar 

  21. O’Connell KF, Golden A (2014) Confocal imaging of the microtubule cytoskeleton in C. elegans embryos and germ cells. Methods Mol Biol 1075:257–272

    Article  PubMed  Google Scholar 

  22. Boyd L, Hajjar C, O’Connell K (2011) Time-lapse microscopy of early embryogenesis in Caenorhabditis elegans. J Vis Exp. doi:10.3791/2852

    Google Scholar 

  23. Halder G, Paddock SW (1999) Presentation of confocal images. Methods Mol Biol 122:373–384

    CAS  PubMed  Google Scholar 

  24. Lamitina T (2006) Functional genomic approaches in C. elegans. Methods Mol Biol 35:127–138

    Google Scholar 

  25. Hutter H (2006) Fluorescent reporter methods. Methods Mol Biol 351:155–173

    CAS  PubMed  Google Scholar 

  26. Hermann GJ, Schroeder LK, Hieb CA et al (2005) Genetic analysis of lysosomal trafficking in Caenorhabditis elegans. Mol Biol Cell 16:3273–3288

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Fares H, Greenwald I (2001) Regulation of endocytosis by CUP-5, the Caenorhabditis elegans mucolipin-1 homolog. Nat Genet 28:64–68

    CAS  PubMed  Google Scholar 

  28. Frand AR, Russel S, Ruvkun G (2005) Functional genomic analysis of C. elegans molting. PLoS Biol 3:e312

    Article  PubMed Central  PubMed  Google Scholar 

  29. Nicot A-S, Fares H, Payrastre B et al (2006) The phosphoinositide kinase PIKfyve/Fab1p regulates terminal lysosome maturation in Caenorhabditis elegans. Mol Biol Cell 17:3062–3074

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Fares H, Greenwald I (2001) Genetic analysis of endocytosis in Caenorhabditis elegans: coelomocyte uptake defective mutants. Genetics 159:133–145

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Rappleye CA, Paredez AR, Smith CW, McDonald KL, Aroian RV (1999) The coronin-like protein POD-1 is required for anterior-posterior axis formation and cellular architecture in the nematode Caenorhabditis elegans. Genes Dev 13:2838–2851

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Poteryaev D, Spang A (2005) A role of SAND-family proteins in endocytosis. Biochem Soc Trans 33:606–608

    Article  CAS  PubMed  Google Scholar 

  33. Audhya A, Hyndman F, McLeod IX et al (2005) A complex containing the Sm protein CAR-1 and the RNA helicase CGH-1 is required for embryonic cytokinesis in Caenorhabditis elegans. J Cell Biol 171:267–279

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Sato K, Sato M, Audhya A, Oegema K, Schweinsberg P, Grant BD (2006) Dynamic regulation of caveolin-1 trafficking in the germ line and embryo of Caenorhabditis elegans. Mol Biol Cell 17:3085–3094

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Sato M, Sato K, Liou W, Pant S, Harada A, Grant BD (2008) Regulation of endocytic recycling by C. elegans Rab35 and its regulator RME-4, a coated-pit protein. EMBO J 27:1183–1196

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Franz C, Askjaer P, Antonin W et al (2005) Nup155 regulates nuclear envelope and nuclear pore complex formation in nematodes and vertebrates. EMBO J 24:3519–3531

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Kimura K, Kimura A (2012) Rab6 is required for the exocytosis of cortical granules and the recruitment of separase to the granules during the oocyte-to-embryo transition in Caenorhabditis elegans. J Cell Sci 125:5897–5905

    Article  CAS  PubMed  Google Scholar 

  38. Patton A, Knuth S, Schaheen B, Dang H, Greenwald I, Fares H (2005) Endocytosis function of a ligand-gated ion channel homolog in Caenorhabditis elegans. Curr Biol 15:1045–1050

    Article  CAS  PubMed  Google Scholar 

  39. Zhang Y, Grant B, Hirsh D (2001) RME-8, a conserved J-domain protein, is required for endocytosis in Caenorhabditis elegans. Mol Biol Cell 12:2011–2021

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Treusch S, Knuth S, Slaugenhaupt SA, Goldin E, Grant BD, Fares H (2004) Caenorhabditis elegans functional orthologue of human protein h-mucolipin-1 is required for lysosome biogenesis. Proc Natl Acad Sci U S A 101:4483–4488

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Dang H, Li Z, Skolnik EY, Fares H (2004) Disease-related myotubularins function in endocytic traffic in Caenorhabditis elegans. Mol Biol Cell 15:189–196

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Sato K, Ernstrom GG, Watanabe S et al (2009) Differential requirements for clathrin in receptor-mediated endocytosis and maintenance of synaptic vesicle pools. Proc Natl Acad Sci U S A 106:1139–1144

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Shi A, Pant S, Balklava Z, Chen CC-H, Figueroa V, Grant BD (2007) A novel requirement for C. elegans Alix/ALX-1 in RME-1-mediated membrane transport. Curr Biol 17:1913–1924

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Shi A, Liu O, Koenig S, Banerjee R, Chen CC-H, Eimer S, Grant BD (2012) RAB-10-GTPase-mediated regulation of endosomal phosphatidylinositol-4,5-bisphosphate. Proc Natl Acad Sci U S A 109:2306–2315

    Article  Google Scholar 

  45. Shi A, Chen CC-H, Banerjee R et al (2010) EHBP-1 functions with RAB-10 during endocytic recycling in Caenorhabditis elegans. Mol Biol Cell 21:2930–2943

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Mahoney TR, Liu Q, Itoh T et al (2006) Regulation of synaptic transmission by RAB-3 and RAB-27 in Caenorhabditis elegans. Mol Biol Cell 17:2617–2625

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Kubota Y, Sano M, Goda S, Suzuki N, Nishiwaki K (2006) The conserved oligomeric Golgi complex acts in organ morphogenesis via glycosylation of an ADAM protease in C. elegans. Development 133:263–273

    Article  CAS  PubMed  Google Scholar 

  48. Labrousse AM, Zappaterra MD, Rube DA, van der Bliek AM (1999) C. elegans dynamin-related protein DRP-1 controls severing of the mitochondrial outer membrane. Mol Cell 4:815–826

    Article  CAS  PubMed  Google Scholar 

  49. Li Z, Lu N, He X, Zhou Z (2013) Monitoring the clearance of apoptotic and necrotic cells in the nematode Caenorhabditis elegans. Methods Mol Biol 1004:183–202

    Article  PubMed Central  PubMed  Google Scholar 

  50. Chen D, Jian Y, Liu X et al (2013) Clathrin and AP2 are required for phagocytic receptor-mediated apoptotic cell clearance in Caenorhabditis elegans. PLoS Genet 9:e1003517

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Kinchen JM, Doukoumetzidis K, Almendinger J et al (2008) A pathway for phagosome maturation during engulfment of apoptotic cells. Nat Cell Biol 10:556–566

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Huang J, Wang H, Chen Y, Wang X, Zhang H (2012) Residual body removal during spermatogenesis in C. elegans requires genes that mediate cell corpse clearance. Development 139:4613–4622

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Lu N, Shen Q, Mahoney TR, Neukomm LJ, Wang Y, Zhou Z (2012) Two PI 3-kinases and one PI 3-phosphatase together establish the cyclic waves of phagosomal PtdIns(3)P critical for the degradation of apoptotic cells. PLoS Biol 10:e1001245

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Guo P, Hu T, Zhang J, Jiang S, Wang X (2010) Sequential action of Caenorhabditis elegans Rab GTPases regulates phagolysosome formation during apoptotic cell degradation. Proc Natl Acad Sci U S A 107:18016–18021

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Pant S, Sharma M, Patel K, Caplan S, Carr CM, Grant BD (2009) AMPH-1/Amphiphysin/Bin1 functions with RME-1/Ehd1 in endocytic recycling. Nat Cell Biol 11:1399–1410

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Roudier N, Lefebvre C, Legouis R (2005) CeVPS-27 is an endosomal protein required for the molting and the endocytic trafficking of the low-density lipoprotein receptor-related protein 1 in Caenorhabditis elegans. Traffic 6:695–705

    Article  CAS  PubMed  Google Scholar 

  57. Chen D, Xiao H, Zhang K (2010) Retromer is required for apoptotic cell clearance by phagocytic receptor recycling. Science 327:1261–1264

    Article  CAS  PubMed  Google Scholar 

  58. Meléndez A, Tallóczy Z, Seaman M, Eskelinen E-L, Hall DH, Levine B (2003) Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301:1387–1391

    Article  PubMed  Google Scholar 

  59. Larsen MK, Tuck S, Faergeman NJ, Knudsen J (2006) MAA-1, a novel acyl-CoA-binding protein involved in endosomal vesicle transport in Caenorhabditis elegans. Mol Biol Cell 17:4318–4329

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Nakae I, Fujino T, Kobayashi T et al (2010) The arf-like GTPase Arl8 mediates delivery of endocytosed macromolecules to lysosomes in Caenorhabditis elegans. Mol Biol Cell 21:2434–2442

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Matyash V, Geier C, Henske A et al (2001) Distribution and transport of cholesterol in Caenorhabditis elegans. Mol Biol Cell 12:1725–1736

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

Protocols were based on many works published by members of the worm research community. We apologize for any omissions in reference. We would like to acknowledge funding by the Biozentrum of the University of Basel and the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Spang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Solinger, J.A., Poteryaev, D., Spang, A. (2014). Application of RNAi Technology and Fluorescent Protein Markers to Study Membrane Traffic in C. elegans . In: Ivanov, A. (eds) Exocytosis and Endocytosis. Methods in Molecular Biology, vol 1174. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0944-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0944-5_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0943-8

  • Online ISBN: 978-1-4939-0944-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics