Skip to main content

Virus-Induced Gene Silencing as a Tool to Study Regulation of Alkaloid Biosynthesis in Medicinal Plants

  • Protocol
  • First Online:
Plant Secondary Metabolism Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2469))

Abstract

Advancements in genomics and transcriptomics have generated invaluable resources for the discovery of novel genes related to complex specialized metabolic pathways in plants. Virus-induced gene silencing (VIGS) has emerged as a powerful tool that is widely used for rapid functional characterization of genes in planta. VIGS has advantages over other reverse genetic approaches, such as RNAi-mediated suppression or T-DNA knockout, because it does not require the development of stable transgenic lines which is technically challenging and time consuming. Catharanthus roseus is an important medicinal plant that produces more than a hundred monoterpenoid indole alkaloids (MIAs), including the antineoplastic drugs vincristine and vinblastine. Biosynthesis of these alkaloids is strikingly complex, resulting in MIA accumulation in low quantities. Jasmonic acid (JA) is an elicitor of the MIA biosynthesis. Exogenous application of JA in C. roseus induces MIA pathway gene expression and increases MIA accumulation. The core JA signaling module comprises multiple components including the JA coreceptor Coronatine-Insensitive 1(COI1). COI1 plays a key role in JA-responsive gene expression in plants. Because generation of stable transgenic C. roseus plants is challenging, VIGS is being used for functional characterization of genes in the MIA pathway. Here we describe a detailed method for the VIGS-mediated suppression of C. roseus COI1(CrCOI1) expression to decipher the regulatory mechanism of JA-induced elicitation of MIA biosynthesis. When performing VIGS, gene silencing efficiency and the viral spread are monitored by the development of visible phenotype in the control plants. We use the C. roseus phytoene desaturase (CrPDS) and Protoporphyrin IX Mg-chelatase subunit H (CrChlH) as visual markers to access VIGS efficiency and viral spread. The protocol described here could be used for the functional characterization of genes involved in other metabolic pathways and in other medicinal plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Velasquez AC, Chakravarthy S, Martin GB (2009) Virus-induced gene silencing (VIGS) in Nicotiana benthamiana and tomato. J Vis Exp 10:1292

    Google Scholar 

  2. Bachan S, Dinesh-Kumar SP (2012) Tobacco rattle virus (TRV)-based virus-induced gene silencing. Methods Mol Biol 894:83–92

    Article  CAS  Google Scholar 

  3. Burch-Smith TM, Anderson JC, Martin GB, Dinesh-Kumar SP (2004) Applications and advantages of virus-induced gene silencing for gene function studies in plants. Plant J 39:734–746

    Article  CAS  Google Scholar 

  4. Igarashi A, Yamagata K, Sugai T, Takahashi Y, Sugawara E, Tamura A, Yaegashi H, Yamagishi N, Takahashi T, Isogai M, Takahashi H, Yoshikawa N (2009) Apple latent spherical virus vectors for reliable and effective virus-induced gene silencing among a broad range of plants including tobacco, tomato, Arabidopsis thaliana, cucurbits, and legumes. Virology 386:407–416

    Article  CAS  Google Scholar 

  5. Liu Y, Schiff M, Dinesh-Kumar SP (2002) Virus-induced gene silencing in tomato. Plant J 31:777–786

    Article  CAS  Google Scholar 

  6. Chung E, Seong E, Kim YC, Chung EJ, Oh SK, Lee S, Park JM, Joung YH, Choi D (2004) A method of high frequency virus-induced gene silencing in chili pepper (Capsicum annuum L. cv. Bukang). Mol Cells 17:377–380

    CAS  PubMed  Google Scholar 

  7. Brigneti G, Martin-Hernandez AM, Jin H, Chen J, Baulcombe DC, Baker B, Jones JD (2004) Virus-induced gene silencing in Solanum species. Plant J 39:264–272

    Article  CAS  Google Scholar 

  8. Holland JF, Scharlau C, Gailani S, Krant MJ, Olson KB, Horton J, Shnider BI, Lynch JJ, Owens A, Carbone PP, Colsky J, Grob D, Miller SP, Hall TC (1973) Vincristine treatment of advanced cancer: a cooperative study of 392 cases. Cancer Res 33:1258–1264

    CAS  PubMed  Google Scholar 

  9. Carqueijeiro I, Noronha H, Duarte P, Geros H, Sottomayor M (2013) Vacuolar transport of the medicinal alkaloids from Catharanthus roseus is mediated by a proton-driven antiport. Plant Physiol 162:1486–1496

    Article  CAS  Google Scholar 

  10. Verma P, Mathur AK, Srivastava A, Mathur A (2012) Emerging trends in research on spatial and temporal organization of terpenoid indole alkaloid pathway in Catharanthus roseus: a literature update. Protoplasma 249:255–268

    Article  CAS  Google Scholar 

  11. Patra B, Pattanaik S, Schluttenhofer C, Yuan L (2018) A network of jasmonate-responsive bHLH factors modulate monoterpenoid indole alkaloid biosynthesis in Catharanthus roseus. New Phytol 217:1566–1581

    Article  CAS  Google Scholar 

  12. Xu L, Liu F, Lechner E, Genschik P, Crosby WL, Ma H, Peng W, Huang D, Xie D (2002) The SCF(COI1) ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis. Plant Cell 14:1919–1935

    Article  CAS  Google Scholar 

  13. Katsir L, Al S, Staswick PE, He SY, Howe GA (2008) COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proc Natl Acad Sci U S A 105:7100–7105

    Article  CAS  Google Scholar 

  14. Chini A, Boter M, Solano R (2009) Plant oxylipins: COI1/JAZs/MYC2 as the core jasmonic acid-signalling module. FEBS J 276:4682–4692

    Article  CAS  Google Scholar 

  15. Pauwels L, Goossens A (2011) The JAZ proteins: a crucial interface in the jasmonate signaling cascade. Plant Cell 23:3089–3100

    Article  CAS  Google Scholar 

  16. Liu Y, Patra B, Pattanaik S, Wang Y, Yuan L (2019) GATA and phytochrome interacting factor transcription factors regulate light-induced vindoline biosynthesis in Catharanthus roseus. Plant Physiol 180:1336–1350

    Article  CAS  Google Scholar 

  17. Sk S, Patra B, Paul P, Liu Y, Pattanaik S, Yuan L (2020) Revisiting the ORCA gene cluster that regulates terpenoid indole alkaloid biosynthesis in Catharanthus roseus. Plant Sci 293:110408

    Article  Google Scholar 

  18. Paul P, Singh SK, Patra B, Sui X, Pattanaik S, Yuan L (2017) A differentially regulated AP2/ERF transcription factor gene cluster acts downstream of a MAP kinase cascade to modulate terpenoid indole alkaloid biosynthesis in Catharanthus roseus. New Phytol 213:1107–1123

    Article  CAS  Google Scholar 

  19. Qu Y, Easson ML, Froese J, Simionescu R, Hudlicky T, De Luca V (2015) Completion of the seven-step pathway from tabersonine to the anticancer drug precursor vindoline and its assembly in yeast. Proc Natl Acad Sci U S A 112:6224–6229

    Article  CAS  Google Scholar 

  20. Yu F, De Luca V (2013) ATP-binding cassette transporter controls leaf surface secretion of anticancer drug components in Catharanthus roseus. Proc Natl Acad Sci U S A 110:15830–15835

    Article  CAS  Google Scholar 

  21. Liscombe DK, O'Connor SE (2011) A virus-induced gene silencing approach to understanding alkaloid metabolism in Catharanthus roseus. Phytochemistry 72:1969–1977

    Article  CAS  Google Scholar 

  22. Hiriart JB, Lehto K, Tyystjarvi E, Junttila T, Aro EM (2002) Suppression of a key gene involved in chlorophyll biosynthesis by means of virus-inducing gene silencing. Plant Mol Biol 50:213–224

    Article  CAS  Google Scholar 

  23. Suttipanta N, Pattanaik S, Kulshrestha M, Patra B, Singh S, Yuan L (2011) The transcription factor CrWRKY1 positively regulates the terpenoid indole alkaloid biosynthesis in Catharanthus roseus. Plant Physiol 157:2081–2093

    Article  CAS  Google Scholar 

  24. Lourdes Miranda-Ham M, Islas-Flores I, Vazquez-Flota AF (2007) Accumulation of monoterpenoid indole alkaloids in periwinkle seedlings (Catharanthus roseus) as a model for the study of plant-environment interactions. Biochem Mol Biol Educ 35:206–210

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Barunava Patra or Ling Yuan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Patra, B., Liu, Y., Singleton, J.J., Singh, S.K., Pattanaik, S., Yuan, L. (2022). Virus-Induced Gene Silencing as a Tool to Study Regulation of Alkaloid Biosynthesis in Medicinal Plants. In: Fett-Neto, A.G. (eds) Plant Secondary Metabolism Engineering. Methods in Molecular Biology, vol 2469. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2185-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2185-1_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2184-4

  • Online ISBN: 978-1-0716-2185-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics