Skip to main content

Predicting Protein Conformational Disorder and Disordered Binding Sites

  • Protocol
  • First Online:
Data Mining Techniques for the Life Sciences

Abstract

In the last two decades it has become increasingly evident that a large number of proteins adopt either a fully or a partially disordered conformation. Intrinsically disordered proteins are ubiquitous proteins that fulfill essential biological functions while lacking a stable 3D structure. Their conformational heterogeneity is encoded by the amino acid sequence, thereby allowing intrinsically disordered proteins or regions to be recognized based on their sequence properties. The identification of disordered regions facilitates the functional annotation of proteins and is instrumental for delineating boundaries of protein domains amenable to crystallization. This chapter focuses on the methods currently employed for predicting protein disorder and identifying intrinsically disordered binding sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Peng Z, Yan J, Fan X, Mizianty MJ, Xue B, Wang K, Hu G, Uversky VN, Kurgan L (2015) Exceptionally abundant exceptions: comprehensive characterization of intrinsic disorder in all domains of life. Cell Mol Life Sci 72(1):137–151. https://doi.org/10.1007/s00018-014-1661-9

    Article  CAS  PubMed  Google Scholar 

  2. Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT (2004) Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 337(3):635–645

    Article  CAS  PubMed  Google Scholar 

  3. Bogatyreva NS, Finkelstein AV, Galzitskaya OV (2006) Trend of amino acid composition of proteins of different taxa. J Bioinforma Comput Biol 4(2):597–608

    Article  CAS  Google Scholar 

  4. Dunker AK, Babu MM, Barbar E, Blackledge M, Bondos SE, Dosztányi Z, Dyson HJ, Forman-Kay J, Fuxreiter M, Gsponer J, Han K-H, Jones DT, Longhi S, Metallo SJ, Nishikawa K, Nussinov R, Obradovic Z, Pappu RV, Rost B, Selenko P, Subramaniam V, Sussman JL, Tompa P, Uversky VN (2013) What’s in a name? Why these proteins are intrinsically disordered. Intrinsically Disord Proteins 1:e24157

    Article  PubMed  PubMed Central  Google Scholar 

  5. Uversky VN (2015) The multifaceted roles of intrinsic disorder in protein complexes. FEBS Lett. https://doi.org/10.1016/j.febslet.2015.06.004

  6. Haynes C, Oldfield CJ, Ji F, Klitgord N, Cusick ME, Radivojac P, Uversky VN, Vidal M, Iakoucheva LM (2006) Intrinsic disorder is a common feature of hub proteins from four eukaryotic interactomes. PLoS Comput Biol 2(8):e100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Habchi J, Tompa P, Longhi S, Uversky VN (2014) Introducing protein intrinsic disorder. Chem Rev 114(13):6561–6588. https://doi.org/10.1021/cr400514h

    Article  CAS  PubMed  Google Scholar 

  8. Babu MM (2016) The contribution of intrinsically disordered regions to protein function, cellular complexity, and human disease. Biochem Soc Trans 44(5):1185–1200. https://doi.org/10.1042/BST20160172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Uversky VN (2019) Intrinsically disordered proteins and their “Mysterious” (meta)physics. Front Phys 7(10). https://doi.org/10.3389/fphy.2019.00010

  10. Uversky VN (2017) Intrinsically disordered proteins in overcrowded milieu: membrane-less organelles, phase separation, and intrinsic disorder. Curr Opin Struct Biol 44:18–30. https://doi.org/10.1016/j.sbi.2016.10.015

    Article  CAS  PubMed  Google Scholar 

  11. Banani SF, Lee HO, Hyman AA, Rosen MK (2017) Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol 18(5):285–298. https://doi.org/10.1038/nrm.2017.7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shin Y, Brangwynne CP (2017) Liquid phase condensation in cell physiology and disease. Science 357(6357). https://doi.org/10.1126/science.aaf4382

  13. Boeynaems S, Alberti S, Fawzi NL, Mittag T, Polymenidou M, Rousseau F, Schymkowitz J, Shorter J, Wolozin B, Van Den Bosch L, Tompa P, Fuxreiter M (2018) Protein phase separation: a new phase in cell biology. Trends Cell Biol 28(6):420–435. https://doi.org/10.1016/j.tcb.2018.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Alberti S, Hyman AA (2021) Biomolecular condensates at the nexus of cellular stress, protein aggregation disease and ageing. Nature reviews Mol Cell Biol 22(3):196–213. https://doi.org/10.1038/s41580-020-00326-6

    Article  CAS  Google Scholar 

  15. Lobley A, Swindells MB, Orengo CA, Jones DT (2007) Inferring function using patterns of native disorder in proteins. PLoS Comput Biol 3(8):e162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Ferron F, Longhi S, Canard B, Karlin D (2006) A practical overview of protein disorder prediction methods. Proteins 65(1):1–14

    Article  CAS  PubMed  Google Scholar 

  17. Ferron F, Rancurel C, Longhi S, Cambillau C, Henrissat B, Canard B (2005) VaZyMolO: a tool to define and classify modularity in viral proteins. J Gen Virol 86(Pt 3):743–749

    Article  CAS  PubMed  Google Scholar 

  18. Lieutaud P, Ferron F, Habchi J, Canard B, Longhi S (2013) Predicting protein disorder and induced folding : a practical approach. In: Dunn B (ed) Advances in protein and peptide sciences, vol 1. Bentham Science Publishers, pp 441–492. (452)

    Chapter  Google Scholar 

  19. Bourhis JM, Canard B, Longhi S (2007) Predicting protein disorder and induced folding: from theoretical principles to practical applications. Curr Protein Pept Sci 8(2):135–149

    Article  CAS  PubMed  Google Scholar 

  20. Uversky VN, Radivojac P, Iakoucheva LM, Obradovic Z, Dunker AK (2007) Prediction of intrinsic disorder and its use in functional proteomics. Methods Mol Biol 408:69–92

    Article  CAS  PubMed  Google Scholar 

  21. He B, Wang K, Liu Y, Xue B, Uversky VN, Dunker AK (2009) Predicting intrinsic disorder in proteins: an overview. Cell Res. https://doi.org/10.1038/cr.2009.87

  22. Longhi S, Lieutaud P, Canard B (2010) Conformational disorder. Methods Mol Biol 609:307–325

    Article  CAS  PubMed  Google Scholar 

  23. Meng F, Uversky VN, Kurgan L (2017) Comprehensive review of methods for prediction of intrinsic disorder and its molecular functions. Cell Mol Life Sci 74(17):3069–3090. https://doi.org/10.1007/s00018-017-2555-4

    Article  CAS  PubMed  Google Scholar 

  24. Liu Y, Wang X, Liu B (2019) A comprehensive review and comparison of existing computational methods for intrinsically disordered protein and region prediction. Brief Bioinformatics 20(1):330–346. https://doi.org/10.1093/bib/bbx126

    Article  CAS  PubMed  Google Scholar 

  25. Necci M, Piovesan D, Tosatto SCE (2021) Critical assessment of protein intrinsic disorder prediction. Nat Methods 18(5):472–481. https://doi.org/10.1038/s41592-021-01117-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Katuwawala A, Peng Z, Yang J, Kurgan L (2019) Computational prediction of MoRFs, Short disorder-to-order transitioning protein binding regions. Comput Struct Biotechnol J 17:454–462. https://doi.org/10.1016/j.csbj.2019.03.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Monastyrskyy B, Kryshtafovych A, Moult J, Tramontano A, Fidelis K (2014) Assessment of protein disorder region predictions in CASP10. Proteins 82(Suppl. 2):127–137. https://doi.org/10.1002/prot.24391

    Article  CAS  PubMed  Google Scholar 

  28. Ishida T, Kinoshita K (2008) Prediction of disordered regions in proteins based on the meta approach. Bioinformatics 24(11):1344–1348. https://doi.org/10.1093/bioinformatics/btn195

    Article  CAS  PubMed  Google Scholar 

  29. Lieutaud P, Canard B, Longhi S (2008) MeDor: a metaserver for predicting protein disorder. BMC Genomics 9(Suppl. 2):S25

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lang B, Babu MM (2021) A community effort to bring structure to disorder. Nat Methods 18(5):454–455. https://doi.org/10.1038/s41592-021-01123-5

    Article  CAS  PubMed  Google Scholar 

  31. Brown CJ, Johnson AK, Dunker AK, Daughdrill GW (2011) Evolution and disorder. Curr Opin Struct Biol 21(3):441–446. https://doi.org/10.1016/j.sbi.2011.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Oates ME, Romero P, Ishida T, Ghalwash M, Mizianty MJ, Xue B, Dosztanyi Z, Uversky VN, Obradovic Z, Kurgan L, Dunker AK, Gough J (2013) D(2)P(2): database of disordered protein predictions. Nucleic Acids Res 41(Database issue):D508–D516. https://doi.org/10.1093/nar/gks1226

    Article  CAS  PubMed  Google Scholar 

  33. Pandurangan AP, Stahlhacke J, Oates ME, Smithers B, Gough J (2019) The SUPERFAMILY 2.0 database: a significant proteome update and a new webserver. Nucleic Acids Res 47(D1):D490–D494. https://doi.org/10.1093/nar/gky1130

    Article  CAS  PubMed  Google Scholar 

  34. Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E (2015) PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res 43(Database issue):D512–D520. https://doi.org/10.1093/nar/gku1267

    Article  CAS  PubMed  Google Scholar 

  35. Potenza E, Di Domenico T, Walsh I, Tosatto SC (2015) MobiDB 2.0: an improved database of intrinsically disordered and mobile proteins. Nucleic Acids Res 43(Database issue):D315–D320. https://doi.org/10.1093/nar/gku982

    Article  CAS  PubMed  Google Scholar 

  36. Piovesan D, Necci M, Escobedo N, Monzon AM, Hatos A, Micetic I, Quaglia F, Paladin L, Ramasamy P, Dosztanyi Z, Vranken WF, Davey NE, Parisi G, Fuxreiter M, Tosatto SCE (2021) MobiDB: intrinsically disordered proteins in 2021. Nucleic Acids Res 49(D1):D361–D367. https://doi.org/10.1093/nar/gkaa1058

    Article  CAS  PubMed  Google Scholar 

  37. Sickmeier M, Hamilton JA, LeGall T, Vacic V, Cortese MS, Tantos A, Szabo B, Tompa P, Chen J, Uversky VN, Obradovic Z, Dunker AK (2007) DisProt: the database of disordered proteins. Nucleic Acids Res 35(Database issue):D786–D793

    Article  CAS  PubMed  Google Scholar 

  38. Hatos A, Hajdu-Soltesz B, Monzon AM, Palopoli N, Alvarez L, Aykac-Fas B, Bassot C, Benitez GI, Bevilacqua M, Chasapi A, Chemes L, Davey NE, Davidovic R, Dunker AK, Elofsson A, Gobeill J, Foutel NSG, Sudha G, Guharoy M, Horvath T, Iglesias V, Kajava AV, Kovacs OP, Lamb J, Lambrughi M, Lazar T, Leclercq JY, Leonardi E, Macedo-Ribeiro S, Macossay-Castillo M, Maiani E, Manso JA, Marino-Buslje C, Martinez-Perez E, Meszaros B, Micetic I, Minervini G, Murvai N, Necci M, Ouzounis CA, Pajkos M, Paladin L, Pancsa R, Papaleo E, Parisi G, Pasche E, Barbosa Pereira PJ, Promponas VJ, Pujols J, Quaglia F, Ruch P, Salvatore M, Schad E, Szabo B, Szaniszlo T, Tamana S, Tantos A, Veljkovic N, Ventura S, Vranken W, Dosztanyi Z, Tompa P, Tosatto SCE, Piovesan D (2020) DisProt: intrinsic protein disorder annotation in 2020. Nucleic Acids Res 48(D1):D269–D276. https://doi.org/10.1093/nar/gkz975

    Article  CAS  PubMed  Google Scholar 

  39. Fukuchi S, Amemiya T, Sakamoto S, Nobe Y, Hosoda K, Kado Y, Murakami SD, Koike R, Hiroaki H, Ota M (2014) IDEAL in 2014 illustrates interaction networks composed of intrinsically disordered proteins and their binding partners. Nucleic Acids Res 42(Database issue):D320–D325. https://doi.org/10.1093/nar/gkt1010

    Article  CAS  PubMed  Google Scholar 

  40. Zhao B, Katuwawala A, Oldfield CJ, Dunker AK, Faraggi E, Gsponer J, Kloczkowski A, Malhis N, Mirdita M, Obradovic Z, Soding J, Steinegger M, Zhou Y, Kurgan L (2021) DescribePROT: database of amino acid-level protein structure and function predictions. Nucleic Acids Res 49(D1):D298–D308. https://doi.org/10.1093/nar/gkaa931

    Article  CAS  PubMed  Google Scholar 

  41. Varadi M, Kosol S, Lebrun P, Valentini E, Blackledge M, Dunker AK, Felli IC, Forman-Kay JD, Kriwacki RW, Pierattelli R, Sussman J, Svergun DI, Uversky VN, Vendruscolo M, Wishart D, Wright PE, Tompa P (2014) pE-DB: a database of structural ensembles of intrinsically disordered and of unfolded proteins. Nucleic Acids Res 42(Database issue):D326–D335. https://doi.org/10.1093/nar/gkt960

    Article  CAS  PubMed  Google Scholar 

  42. Lazar T, Martinez-Perez E, Quaglia F, Hatos A, Chemes LB, Iserte JA, Mendez NA, Garrone NA, Saldano TE, Marchetti J, Rueda AJV, Bernado P, Blackledge M, Cordeiro TN, Fagerberg E, Forman-Kay JD, Fornasari MS, Gibson TJ, Gomes GW, Gradinaru CC, Head-Gordon T, Jensen MR, Lemke EA, Longhi S, Marino-Buslje C, Minervini G, Mittag T, Monzon AM, Pappu RV, Parisi G, Ricard-Blum S, Ruff KM, Salladini E, Skepo M, Svergun D, Vallet SD, Varadi M, Tompa P, Tosatto SCE, Piovesan D (2021) PED in 2021: a major update of the protein ensemble database for intrinsically disordered proteins. Nucleic Acids Res 49(D1):D404–D411. https://doi.org/10.1093/nar/gkaa1021

    Article  CAS  PubMed  Google Scholar 

  43. Schad E, Ficho E, Pancsa R, Simon I, Dosztanyi Z, Meszaros B (2018) DIBS: a repository of disordered binding sites mediating interactions with ordered proteins. Bioinformatics 34(3):535–537. https://doi.org/10.1093/bioinformatics/btx640

    Article  CAS  PubMed  Google Scholar 

  44. Ficho E, Remenyi I, Simon I, Meszaros B (2017) MFIB: a repository of protein complexes with mutual folding induced by binding. Bioinformatics 33(22):3682–3684. https://doi.org/10.1093/bioinformatics/btx486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Miskei M, Antal C, Fuxreiter M (2017) FuzDB: database of fuzzy complexes, a tool to develop stochastic structure-function relationships for protein complexes and higher-order assemblies. Nucleic Acids Res 45(D1):D228–D235. https://doi.org/10.1093/nar/gkw1019

    Article  CAS  PubMed  Google Scholar 

  46. Vucetic S, Brown C, Dunker K, Obradovic Z (2003) Flavors of protein disorder. Proteins 52:573–584

    Article  CAS  PubMed  Google Scholar 

  47. Karlin D, Ferron F, Canard B, Longhi S (2003) Structural disorder and modular organization in Paramyxovirinae N and P. J Gen Virol 84(Pt 12):3239–3252

    Article  CAS  PubMed  Google Scholar 

  48. Severson W, Xu X, Kuhn M, Senutovitch N, Thokala M, Ferron F, Longhi S, Canard B, Jonsson CB (2005) Essential amino acids of the hantaan virus N protein in its interaction with RNA. J Virol 79(15):10032–10039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Llorente MT, Barreno-Garcia B, Calero M, Camafeita E, Lopez JA, Longhi S, Ferron F, Varela PF, Melero JA (2006) Structural analysis of the human respiratory syncitial virus phosphoprotein: characterization of an a-helical domain involved in oligomerization. J Gen Virol 87:159–169

    Article  CAS  PubMed  Google Scholar 

  50. Habchi J, Mamelli L, Darbon H, Longhi S (2010) Structural disorder within henipavirus nucleoprotein and phosphoprotein: from predictions to experimental assessment. PLoS One 5(7):e11684. https://doi.org/10.1371/journal.pone.0011684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Deng X, Eickholt J, Cheng J (2009) PreDisorder: ab initio sequence-based prediction of protein disordered regions. BMC Bioinformatics 10:436. https://doi.org/10.1186/1471-2105-10-436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Noivirt-Brik O, Prilusky J, Sussman JL (2009) Assessment of disorder predictions in CASP8. Proteins 77(Suppl. 9):210–216. https://doi.org/10.1002/prot.22586

    Article  CAS  PubMed  Google Scholar 

  53. Romero P, Obradovic Z, Li X, Garner EC, Brown CJ, Dunker AK (2001) Sequence complexity of disordered proteins. Proteins 42(1):38–48

    Article  CAS  PubMed  Google Scholar 

  54. Obradovic Z, Peng K, Vucetic S, Radivojac P, Dunker AK (2005) Exploiting heterogeneous sequence properties improves prediction of protein disorder. Proteins 61(Suppl. 7):176–182

    Article  CAS  PubMed  Google Scholar 

  55. Bordoli L, Kiefer F, Schwede T (2007) Assessment of disorder predictions in CASP7. Proteins 69(Suppl. 8):129–136. https://doi.org/10.1002/prot.21671

    Article  CAS  PubMed  Google Scholar 

  56. Obradovic Z, Peng K, Vucetic S, Radivojac P, Brown CJ, Dunker AK (2003) Predicting intrinsic disorder from amino acid sequence. Proteins 53(Suppl. 6):566–572

    Article  CAS  PubMed  Google Scholar 

  57. Linding R, Russell RB, Neduva V, Gibson TJ (2003) GlobPlot: exploring protein sequences for globularity and disorder. Nucleic Acids Res 31(13):3701–3708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Linding R, Jensen LJ, Diella F, Bork P, Gibson TJ, Russell RB (2003) Protein disorder prediction: implications for structural proteomics. Structure (Camb) 11(11):1453–1459

    Article  CAS  Google Scholar 

  59. Ward JJ, McGuffin LJ, Bryson K, Buxton BF, Jones DT (2004) The DISOPRED server for the prediction of protein disorder. Bioinformatics 20(13):2138–2139

    Article  CAS  PubMed  Google Scholar 

  60. Orlando G, Raimondi D, Codice F, Tabaro F, Vranken W (2020) Prediction of disordered regions in proteins with recurrent neural networks and protein dynamics. bioRxiv 2020. https://doi.org/10.1101/2020.05.25.115253

  61. Ramraj V (2014) Exploiting whole-PDB analysis in novel bioinformatics applications. University of Oxford

    Google Scholar 

  62. Yang ZR, Thomson R, McNeil P, Esnouf RM (2005) RONN: the bio-basis function neural network technique applied to the detection of natively disordered regions in proteins. Bioinformatics 21(16):3369–3376. https://doi.org/10.1093/bioinformatics/bti534

    Article  CAS  PubMed  Google Scholar 

  63. Lobanov MY, Galzitskaya OV (2011) The Ising model for prediction of disordered residues from protein sequence alone. Phys Biol 8(3):035004. https://doi.org/10.1088/1478-3975/8/3/035004

    Article  CAS  PubMed  Google Scholar 

  64. Lobanov MY, Sokolovskiy IV, Galzitskaya OV (2013) IsUnstruct: prediction of the residue status to be ordered or disordered in the protein chain by a method based on the Ising model. J Biomol Struct Dynam 31(10):1034–1043. https://doi.org/10.1080/07391102.2012.718529

    Article  CAS  Google Scholar 

  65. Meng F, Kurgan L (2016) DFLpred: High-throughput prediction of disordered flexible linker regions in protein sequences. Bioinformatics 32(12):i341–i350. https://doi.org/10.1093/bioinformatics/btw280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cheng J, Sweredoski M, Baldi P (2005) Accurate prediction of protein disordered regions by mining protein structure data. Data Mining Knowl Discov 11:213–222

    Article  Google Scholar 

  67. Pollastri G, McLysaght A (2005) Porter: a new, accurate server for protein secondary structure prediction. Bioinformatics 21(8):1719–1720

    Article  CAS  PubMed  Google Scholar 

  68. Walsh I, Martin AJ, Di Domenico T, Tosatto SC (2012) ESpritz: accurate and fast prediction of protein disorder. Bioinformatics 28(4):503–509. https://doi.org/10.1093/bioinformatics/btr682

    Article  CAS  PubMed  Google Scholar 

  69. Ishida T, Kinoshita K (2007) PrDOS: prediction of disordered protein regions from amino acid sequence. Nucleic Acids Res 35(Web Server issue):W460–W464. https://doi.org/10.1093/nar/gkm363

    Article  PubMed  PubMed Central  Google Scholar 

  70. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402. https://doi.org/10.1093/nar/25.17.3389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hanson J, Paliwal K, Litfin T, Yang Y, Zhou Y (2019) Improving prediction of protein secondary structure, backbone angles, solvent accessibility and contact numbers by using predicted contact maps and an ensemble of recurrent and residual convolutional neural networks. Bioinformatics 35(14):2403–2410. https://doi.org/10.1093/bioinformatics/bty1006

    Article  CAS  PubMed  Google Scholar 

  72. Hanson J, Paliwal KK, Litfin T, Zhou Y (2019) SPOT-Disorder2: improved protein intrinsic disorder prediction by ensembled deep learning. Genom Proteom Bioinform 17(6):645–656. https://doi.org/10.1016/j.gpb.2019.01.004

    Article  Google Scholar 

  73. Hanson J, Paliwal K, Zhou Y (2018) Accurate single-sequence prediction of protein intrinsic disorder by an ensemble of deep recurrent and convolutional architectures. J Chem Inform Model 58(11):2369–2376. https://doi.org/10.1021/acs.jcim.8b00636

    Article  CAS  Google Scholar 

  74. Tang YJ, Pang YH, Liu B (2020) IDP-Seq2Seq: identification of intrinsically disordered regions based on sequence to sequence learning. Bioinformatics. https://doi.org/10.1093/bioinformatics/btaa667

  75. Wang S, Ma J, Xu J (2016) AUCpreD: proteome-level protein disorder prediction by AUC-maximized deep convolutional neural fields. Bioinformatics 32(17):i672–i679. https://doi.org/10.1093/bioinformatics/btw446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Meszaros B, Erdos G, Dosztanyi Z (2018) IUPred2A: context-dependent prediction of protein disorder as a function of redox state and protein binding. Nucleic Acids Res 46(W1):W329–W337. https://doi.org/10.1093/nar/gky384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Galzitskaya OV, Garbuzynskiy SO, Lobanov MY (2006) FoldUnfold: web server for the prediction of disordered regions in protein chain. Bioinformatics 22(23):2948–2949

    Article  CAS  PubMed  Google Scholar 

  78. Meszaros B, Simon I, Dosztanyi Z (2009) Prediction of protein binding regions in disordered proteins. PLoS Comput Biol 5(5):e1000376. https://doi.org/10.1371/journal.pcbi.1000376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Cilia E, Pancsa R, Tompa P, Lenaerts T, Vranken WF (2014) The DynaMine webserver: predicting protein dynamics from sequence. Nucleic Acids Res 42(Web Server issue):W264–W270. https://doi.org/10.1093/nar/gku270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Cilia E, Pancsa R, Tompa P, Lenaerts T, Vranken WF (2013) From protein sequence to dynamics and disorder with DynaMine. Nat Commun 4:2741. https://doi.org/10.1038/ncomms3741

    Article  CAS  PubMed  Google Scholar 

  81. Sormanni P, Camilloni C, Fariselli P, Vendruscolo M (2015) The s2D method: simultaneous sequence-based prediction of the statistical populations of ordered and disordered regions in proteins. J Mol Biol 427(4):982–996. https://doi.org/10.1016/j.jmb.2014.12.007

    Article  CAS  PubMed  Google Scholar 

  82. Necci M, Piovesan D, Clementel D, Dosztanyi Z, Tosatto SCE (2020) MobiDB-lite 3.0: fast consensus annotation of intrinsic disorder flavours in proteins. Bioinformatics. https://doi.org/10.1093/bioinformatics/btaa1045

  83. Iqbal S, Hoque MT (2016) Estimation of position specific energy as a feature of protein residues from sequence alone for structural classification. PLoS One 11(9):e0161452. https://doi.org/10.1371/journal.pone.0161452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Faraggi E, Xue B, Zhou Y (2009) Improving the prediction accuracy of residue solvent accessibility and real-value backbone torsion angles of proteins by guided-learning through a two-layer neural network. Proteins 74(4):847–856. https://doi.org/10.1002/prot.22193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Asgari E, Mofrad MR (2015) Continuous distributed representation of biological sequences for deep proteomics and genomics. PLoS One 10(11):e0141287. https://doi.org/10.1371/journal.pone.0141287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kim SS, Seffernick JT, Lindert S (2018) Accurately predicting disordered regions of proteins using rosetta residuedisorder application. J Phys Chem B 122(14):3920–3930. https://doi.org/10.1021/acs.jpcb.8b01763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Seffernick JT, Ren H, Kim SS, Lindert S (2019) Measuring intrinsic disorder and tracking conformational transitions using Rosetta residue disorder. J Phys Chem B 123(33):7103–7112. https://doi.org/10.1021/acs.jpcb.9b04333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Uversky VN, Gillespie JR, Fink AL (2000) Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins 41(3):415–427

    Article  CAS  PubMed  Google Scholar 

  89. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157(1):105–132. https://doi.org/10.1016/0022-2836(82)90515-0

    Article  CAS  PubMed  Google Scholar 

  90. Zeev-Ben-Mordehai T, Rydberg EH, Solomon A, Toker L, Auld VJ, Silman I, Botti S, Sussman JL (2003) The intracellular domain of the Drosophila cholinesterase-like neural adhesion protein, gliotactin, is natively unfolded. Proteins 53(3):758–767

    Article  CAS  PubMed  Google Scholar 

  91. Oldfield CJ, Cheng Y, Cortese MS, Brown CJ, Uversky VN, Dunker AK (2005) Comparing and combining predictors of mostly disordered proteins. Biochemistry 44(6):1989–2000

    Article  CAS  PubMed  Google Scholar 

  92. Xue B, Oldfield CJ, Dunker AK, Uversky VN (2009) CDF it all: consensus prediction of intrinsically disordered proteins based on various cumulative distribution functions. FEBS Lett 583(9):1469–1474. https://doi.org/10.1016/j.febslet.2009.03.070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Mohan A, Sullivan WJ Jr, Radivojac P, Dunker AK, Uversky VN (2008) Intrinsic disorder in pathogenic and non-pathogenic microbes: discovering and analyzing the unfoldomes of early-branching eukaryotes. Mol BioSyst 4(4):328–340

    Article  CAS  PubMed  Google Scholar 

  94. Bitard-Feildel T, Lamiable A, Mornon JP, Callebaut I (2018) Order in disorder as observed by the “Hydrophobic Cluster Analysis” of protein sequences. Proteomics 18(21–22):e1800054. https://doi.org/10.1002/pmic.201800054

    Article  CAS  PubMed  Google Scholar 

  95. Callebaut I, Labesse G, Durand P, Poupon A, Canard L, Chomilier J, Henrissat B, Mornon JP (1997) Deciphering protein sequence information through hydrophobic cluster analysis (HCA): current status and perspectives. Cell Mol Life Sci 53(8):621–645

    Article  CAS  PubMed  Google Scholar 

  96. Eudes R, Le Tuan K, Delettre J, Mornon JP, Callebaut I (2007) A generalized analysis of hydrophobic and loop clusters within globular protein sequences. BMC Struct Biol 7:2. https://doi.org/10.1186/1472-6807-7-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kozlowski LP, Bujnicki JM (2012) MetaDisorder: a meta-server for the prediction of intrinsic disorder in proteins. BMC Bioinformatics 13(1):111. https://doi.org/10.1186/1471-2105-13-111

    Article  PubMed  PubMed Central  Google Scholar 

  98. Li J, Deng X, Eickholt J, Cheng J (2013) Designing and benchmarking the MULTICOM protein structure prediction system. BMC Struct Biol 13:2. https://doi.org/10.1186/1472-6807-13-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hou J, Wu T, Cao R, Cheng J (2019) Protein tertiary structure modeling driven by deep learning and contact distance prediction in CASP13. Proteins 87(12):1165–1178. https://doi.org/10.1002/prot.25697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Barik A, Katuwawala A, Hanson J, Paliwal K, Zhou Y, Kurgan L (2020) DEPICTER: intrinsic disorder and disorder function prediction server. J Mol Biol 432(11):3379–3387. https://doi.org/10.1016/j.jmb.2019.12.030

    Article  CAS  PubMed  Google Scholar 

  101. Mizianty MJ, Stach W, Chen K, Kedarisetti KD, Disfani FM, Kurgan L (2010) Improved sequence-based prediction of disordered regions with multilayer fusion of multiple information sources. Bioinformatics 26(18):i489–i496. https://doi.org/10.1093/bioinformatics/btq373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mizianty MJ, Uversky V, Kurgan L (2014) Prediction of intrinsic disorder in proteins using MFDp2. Methods Mol Biol 1137:147–162. https://doi.org/10.1007/978-1-4939-0366-5_11

    Article  CAS  PubMed  Google Scholar 

  103. Fan X, Kurgan L (2014) Accurate prediction of disorder in protein chains with a comprehensive and empirically designed consensus. J Biomol Struct Dyn 32(3):448–464. https://doi.org/10.1080/07391102.2013.775969

    Article  CAS  PubMed  Google Scholar 

  104. Oldfield CJ, Fan X, Wang C, Dunker AK, Kurgan L (2020) Computational prediction of intrinsic disorder in protein sequences with the disCoP meta-predictor. Methods Mol Biol 2141:21–35. https://doi.org/10.1007/978-1-0716-0524-0_2

    Article  CAS  PubMed  Google Scholar 

  105. Xue B, Dunbrack RL, Williams RW, Dunker AK, Uversky VN (2010) PONDR-FIT: a meta-predictor of intrinsically disordered amino acids. Biochim Biophys Acta (BBA): Bioenergetics 1804(4):996–1010. https://doi.org/10.1016/j.bbapap.2010.01.011

    Article  CAS  Google Scholar 

  106. Schlessinger A, Liu J, Rost B (2007) Natively unstructured loops differ from other loops. PLoS Comput Biol 3(7):e140. https://doi.org/10.1371/journal.pcbi.0030140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Schlessinger A, Punta M, Rost B (2007) Natively unstructured regions in proteins identified from contact predictions. Bioinformatics 23(18):2376–2384

    Article  CAS  PubMed  Google Scholar 

  108. Schlessinger A, Punta M, Yachdav G, Kajan L, Rost B (2009) Improved disorder prediction by combination of orthogonal approaches. PLoS One 4(2):e4433. https://doi.org/10.1371/journal.pone.0004433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Schlessinger A, Yachdav G, Rost B (2006) PROFbval: predict flexible and rigid residues in proteins. Bioinformatics 22(7):891–893. https://doi.org/10.1093/bioinformatics/btl032

    Article  CAS  PubMed  Google Scholar 

  110. Chandonia JM (2007) StrBioLib: a Java library for development of custom computational structural biology applications. Bioinformatics 23(15):2018–2020

    Article  CAS  PubMed  Google Scholar 

  111. Necci M, Piovesan D, Dosztanyi Z, Tosatto SCE (2017) MobiDB-lite: fast and highly specific consensus prediction of intrinsic disorder in proteins. Bioinformatics 33(9):1402–1404. https://doi.org/10.1093/bioinformatics/btx015

    Article  CAS  PubMed  Google Scholar 

  112. Katuwawala A, Ghadermarzi S, Hu G, Wu Z, Kurgan L (2021) QUARTERplus: accurate disorder predictions integrated with interpretable residue-level quality assessment scores. Comput Struct Biotechnol J 19:2597–2606. https://doi.org/10.1016/j.csbj.2021.04.066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Blocquel D, Habchi J, Gruet A, Blangy S, Longhi S (2012) Compaction and binding properties of the intrinsically disordered C-terminal domain of Henipavirus nucleoprotein as unveiled by deletion studies. Mol BioSyst 8(1):392–410. https://doi.org/10.1039/c1mb05401e

    Article  CAS  PubMed  Google Scholar 

  114. Uversky VN (2002) Natively unfolded proteins: a point where biology waits for physics. Protein Sci 11(4):739–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Oldfield CJ, Cheng Y, Cortese MS, Romero P, Uversky VN, Dunker AK (2005) Coupled folding and binding with alpha-helix-forming molecular recognition elements. Biochemistry 44(37):12454–12470. https://doi.org/10.1021/bi050736e

    Article  CAS  PubMed  Google Scholar 

  116. Cheng Y, Oldfield CJ, Meng J, Romero P, Uversky VN, Dunker AK (2007) Mining alpha-helix-forming molecular recognition features with cross species sequence alignments. Biochemistry 46(47):13468–13477. https://doi.org/10.1021/bi7012273

    Article  CAS  PubMed  Google Scholar 

  117. Vacic V, Oldfield CJ, Mohan A, Radivojac P, Cortese MS, Uversky VN, Dunker AK (2007) Characterization of molecular recognition features, MoRFs, and their binding partners. J Proteome Res 6(6):2351–2366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Bourhis J, Johansson K, Receveur-Bréchot V, Oldfield CJ, Dunker AK, Canard B, Longhi S (2004) The C-terminal domain of measles virus nucleoprotein belongs to the class of intrinsically disordered proteins that fold upon binding to their physiological partner. Virus Res 99:157–167

    Article  CAS  PubMed  Google Scholar 

  119. John SP, Wang T, Steffen S, Longhi S, Schmaljohn CS, Jonsson CB (2007) Ebola virus VP30 is an RNA binding protein. J Virol 81(17):8967–8976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Meszaros B, Tompa P, Simon I, Dosztanyi Z (2007) Molecular principles of the interactions of disordered proteins. J Mol Biol 372(2):549–561

    Article  CAS  PubMed  Google Scholar 

  121. Habchi J, Blangy S, Mamelli L, Ringkjobing Jensen M, Blackledge M, Darbon H, Oglesbee M, Shu Y, Longhi S (2011) Characterization of the interactions between the nucleoprotein and the phosphoprotein of Henipaviruses. J Biol Chem 286(15):13583–13602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. He H, Zhao J, Sun G (2019) Computational prediction of MoRFs based on protein sequences and minimax probability machine. BMC Bioinformatics 20(1):529. https://doi.org/10.1186/s12859-019-3111-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Sharma R, Kumar S, Tsunoda T, Patil A, Sharma A (2016) Predicting MoRFs in protein sequences using HMM profiles. BMC Bioinformatics 17(Suppl. 19):504. https://doi.org/10.1186/s12859-016-1375-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Sharma R, Bayarjargal M, Tsunoda T, Patil A, Sharma A (2018) MoRFPred-plus: computational identification of MoRFs in protein sequences using physicochemical properties and HMM profiles. J Theor Biol 437:9–16. https://doi.org/10.1016/j.jtbi.2017.10.015

    Article  CAS  PubMed  Google Scholar 

  125. Xue B, Dunker AK, Uversky VN (2010) Retro-MoRFs: identifying protein binding sites by normal and reverse alignment and intrinsic disorder prediction. Int J Mol Sci 11(10):3725–3747. https://doi.org/10.3390/ijms11103725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Fang C, Moriwaki Y, Zhu D, Shimizu K (2018) Identifying MoRFs in disordered proteins using enlarged conserved features. In: Paper presented at the Proceedings of the 2018 6th International Conference on Bioinformatics and Computational Biology, Chengdu, China

    Google Scholar 

  127. Fang C, Noguchi T, Tominaga D, Yamana H (2013) MFSPSSMpred: identifying short disorder-to-order binding regions in disordered proteins based on contextual local evolutionary conservation. BMC Bioinformatics 14:300. https://doi.org/10.1186/1471-2105-14-300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hanson J, Litfin T, Paliwal K, Zhou Y (2020) Identifying molecular recognition features in intrinsically disordered regions of proteins by transfer learning. Bioinformatics 36(4):1107–1113. https://doi.org/10.1093/bioinformatics/btz691

    Article  CAS  PubMed  Google Scholar 

  129. Dosztanyi Z, Meszaros B, Simon I (2009) ANCHOR: web server for predicting protein binding regions in disordered proteins. Bioinformatics 25(20):2745–2746. https://doi.org/10.1093/bioinformatics/btp518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Schramm A, Lieutaud P, Gianni S, Longhi S, Bignon C (2017) InSiDDe: a server for designing artificial disordered proteins. Int J Mol Sci 19(1). https://doi.org/10.3390/ijms19010091

  131. Disfani FM, Hsu WL, Mizianty MJ, Oldfield CJ, Xue B, Dunker AK, Uversky VN, Kurgan L (2012) MoRFpred, a computational tool for sequence-based prediction and characterization of short disorder-to-order transitioning binding regions in proteins. Bioinformatics 28(12):i75–i83. https://doi.org/10.1093/bioinformatics/bts209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Yan J, Dunker AK, Uversky VN, Kurgan L (2016) Molecular recognition features (MoRFs) in three domains of life. Mol BioSyst 12(3):697–710. https://doi.org/10.1039/c5mb00640f

    Article  CAS  PubMed  Google Scholar 

  133. Malhis N, Jacobson M, Gsponer J (2016) MoRFchibi SYSTEM: software tools for the identification of MoRFs in protein sequences. Nucleic Acids Res 44(W1):W488–W493. https://doi.org/10.1093/nar/gkw409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Jones DT, Cozzetto D (2015) DISOPRED3: precise disordered region predictions with annotated protein-binding activity. Bioinformatics 31(6):857–863. https://doi.org/10.1093/bioinformatics/btu744

    Article  CAS  PubMed  Google Scholar 

  135. Sharma R, Raicar G, Tsunoda T, Patil A, Sharma A (2018) OPAL: prediction of MoRF regions in intrinsically disordered protein sequences. Bioinformatics 34(11):1850–1858. https://doi.org/10.1093/bioinformatics/bty032

    Article  CAS  PubMed  Google Scholar 

  136. Sharma R, Sharma A, Raicar G, Tsunoda T, Patil A (2019) OPAL+: length-specific MoRF prediction in intrinsically disordered protein sequences. Proteomics 19(6):e1800058. https://doi.org/10.1002/pmic.201800058

    Article  CAS  PubMed  Google Scholar 

  137. Peng Z, Kurgan L (2015) High-throughput prediction of RNA, DNA and protein binding regions mediated by intrinsic disorder. Nucleic Acids Res 43(18):e121. https://doi.org/10.1093/nar/gkv585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16(4):404–405

    Article  CAS  PubMed  Google Scholar 

  139. Wootton JC (1994) Non-globular domains in protein sequences: automated segmentation using complexity measures. Comput Chem 18(3):269–285

    Article  CAS  PubMed  Google Scholar 

  140. Kall L, Krogh A, Sonnhammer EL (2007) Advantages of combined transmembrane topology and signal peptide prediction--the Phobius web server. Nucleic Acids Res 35(Web Server issue):W429–W432

    Article  PubMed  PubMed Central  Google Scholar 

  141. Bornberg-Bauer E, Rivals E, Vingron M (1998) Computational approaches to identify leucine zippers. Nucleic Acids Res 26(11):2740–2746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Lupas A, Van Dyke M, Stock J (1991) Predicting coiled coils from protein sequences. Science 252(5009):1162–1164

    Article  CAS  PubMed  Google Scholar 

  143. Baldi P, Cheng J, Vullo A (2004) Large-scale prediction of disulphide bond connectivity. Adv Neural Inf Process Syst 17:97–104

    Google Scholar 

  144. Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar Gustavo A, Sonnhammer ELL, Tosatto SCE, Paladin L, Raj S, Richardson LJ, Finn RD, Bateman A (2020) Pfam: the protein families database in 2021. Nucleic Acids Res 49(D1):D412–D419. https://doi.org/10.1093/nar/gkaa913

    Article  CAS  PubMed Central  Google Scholar 

  145. Sillitoe I, Bordin N, Dawson N, Waman VP, Ashford P, Scholes HM, Pang CSM, Woodridge L, Rauer C, Sen N, Abbasian M, Le Cornu S, Lam SD, Berka K, Varekova Ivana H, Svobodova R, Lees J, Orengo CA (2020) CATH: increased structural coverage of functional space. Nucleic Acids Res 49(D1):D266–D273. https://doi.org/10.1093/nar/gkaa1079

    Article  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Longhi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tamburrini, K.C. et al. (2022). Predicting Protein Conformational Disorder and Disordered Binding Sites. In: Carugo, O., Eisenhaber, F. (eds) Data Mining Techniques for the Life Sciences. Methods in Molecular Biology, vol 2449. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2095-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2095-3_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2094-6

  • Online ISBN: 978-1-0716-2095-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics