Skip to main content

Conformational Disorder

  • Protocol
  • First Online:
Data Mining Techniques for the Life Sciences

Part of the book series: Methods in Molecular Biology ((MIMB,volume 609))

Abstract

In recent years it was shown that a large number of proteins are either fully or partially disordered. Intrinsically disordered proteins are ubiquitary proteins that fulfill essential biological functions while lacking a stable 3D structure. Despite the large abundance of disorder, disordered regions are still poorly detected. The identification of disordered regions facilitates the functional annotation of proteins and is instrumental in delineating boundaries of protein domains amenable to crystallization. This chapter focuses on the methods currently employed for predicting disorder and identifying regions involved in induced folding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ward, J. J., Sodhi, J. S., McGuffin, L. J., Buxton, B. F., Jones, D. T. (2004) Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 337(3), 635–645.

    Article  CAS  PubMed  Google Scholar 

  2. Bogatyreva, N. S., Finkelstein, A. V., Galzitskaya, O. V. (2006) Trend of amino acid composition of proteins of different taxa. J Bioinform Comput Biol 4(2), 597–608.

    Article  CAS  PubMed  Google Scholar 

  3. Haynes, C., Oldfield, C. J., Ji, F., Klitgord, N., Cusick, M. E., Radivojac, P., Uversky, V. N., Vidal, M., Iakoucheva, L. M. (2006) Intrinsic disorder is a common feature of hub proteins from four eukaryotic interactomes. PLoS Comput Biol 2(8), e100.

    Article  PubMed  Google Scholar 

  4. Radivojac, P., Iakoucheva, L. M., Oldfield, C. J., Obradovic, Z., Uversky, V. N., Dunker, A. K. (2007) Intrinsic disorder and functional proteomics. Biophys J 92(5), 1439–1456.

    Article  CAS  PubMed  Google Scholar 

  5. Lobley, A., Swindells, M. B., Orengo, C. A., Jones, D. T. (2007) Inferring function using patterns of native disorder in proteins. PLoS Comput Biol 3(8), e162.

    Article  PubMed  Google Scholar 

  6. Ferron, F., Longhi, S., Canard, B., Karlin, D. (2006) A practical overview of protein disorder prediction methods. Proteins 65(1), 1–14.

    Article  CAS  PubMed  Google Scholar 

  7. Bourhis, J., Canard, B., Longhi, S. (2007) Predicting protein disorder and induced folding: from theoretical principles to practical applications. Curr Protein Peptide Sci 8, 135–149.

    Article  CAS  Google Scholar 

  8. Uversky, V. N., Radivojac, P., Iakoucheva, L. M., Obradovic, Z., Dunker, A. K. (2007) Prediction of intrinsic disorder and its use in functional proteomics. Methods Mol Biol 408, 69–92.

    Article  CAS  PubMed  Google Scholar 

  9. Vucetic, S., Brown, C., Dunker, K., Obradovic, Z. (2003) Flavors of protein disorder. Proteins 52, 573–584.

    Article  CAS  PubMed  Google Scholar 

  10. Karlin, D., Ferron, F., Canard, B., Longhi, S. (2003) Structural disorder and modular organization in Paramyxovirinae N and P. J Gen Virol 84(Pt 12), 3239–3252.

    Article  CAS  PubMed  Google Scholar 

  11. Ferron, F., Rancurel, C., Longhi, S., Cambillau, C., Henrissat, B., Canard, B. (2005) VaZyMolO: a tool to define and classify modularity in viral proteins. J Gen Virol 86(Pt 3), 743–749.

    Article  CAS  PubMed  Google Scholar 

  12. Severson, W., Xu, X., Kuhn, M., Senutovitch, N., Thokala, M., Ferron, F., Longhi, S., Canard, B., Jonsson, C. B. (2005) Essential amino acids of the hantaan virus N protein in its interaction with RNA. J Virol 79(15), 10032–10039.

    Article  CAS  PubMed  Google Scholar 

  13. Llorente, M. T., Barreno-Garcia, B., Calero, M., Camafeita, E., Lopez, J. A., Longhi, S., Ferron, F., Varela, P. F., Melero, J. A. (2006) Structural analysis of the human respiratory syncitial virus phosphoprotein: characterization of an a-helical domain involved in oligomerization. J Gen Virol 87, 159–169.

    Article  CAS  PubMed  Google Scholar 

  14. Sickmeier, M., Hamilton, J. A., LeGall, T., Vacic, V., Cortese, M. S., Tantos, A., Szabo, B., Tompa, P., Chen, J., Uversky, V. N., Obradovic, Z., Dunker, A. K. (2007) DisProt: the database of disordered proteins. Nucleic Acids Res 35(Database issue), D786–D793.

    Article  CAS  PubMed  Google Scholar 

  15. Romero, P., Obradovic, Z., Li, X., Garner, E. C., Brown, C. J., Dunker, A. K. (2001) Sequence complexity of disordered proteins. Proteins 42(1), 38–48.

    Article  CAS  PubMed  Google Scholar 

  16. Obradovic, Z., Peng, K., Vucetic, S., Radivojac, P., Dunker, A. K. (2005) Exploiting heterogeneous sequence properties improves prediction of protein disorder. Proteins. 61(Suppl. 7), 176–182.

    Google Scholar 

  17. Obradovic, Z., Peng, K., Vucetic, S., Radivojac, P., Brown, C. J., Dunker, A. K. (2003) Predicting intrinsic disorder from amino acid sequence. Proteins 53(Suppl 6), 566–572.

    Article  CAS  PubMed  Google Scholar 

  18. Peng, K., Vucetic, S., Radivojac, P., Brown, C. J., Dunker, A. K., Obradovic, Z. (2005) Optimizing long intrinsic disorder predictors with protein evolutionary information. J Bioinform Comput Biol 3(1), 35–60.

    Article  CAS  PubMed  Google Scholar 

  19. Linding, R., Russell, R. B., Neduva, V., Gibson, T. J. (2003) GlobPlot: Exploring protein sequences for globularity and disorder. Nucleic Acids Res 31(13), 3701–3708.

    Article  CAS  PubMed  Google Scholar 

  20. Linding, R., Jensen, L. J., Diella, F., Bork, P., Gibson, T. J., Russell, R. B. (2003) Protein disorder prediction: implications for structural proteomics. Structure (Camb) 11(11), 1453–1459.

    Article  CAS  Google Scholar 

  21. Ward, J. J., McGuffin, L. J., Bryson, K., Buxton, B. F., Jones, D. T. (2004) The DISOPRED server for the prediction of protein disorder. Bioinformatics 20(13), 2138–2139.

    Article  CAS  PubMed  Google Scholar 

  22. Yang, Z. R., Thomson, R., McNeil, P., Esnouf, R. M. (2005) RONN: the bio-basis function neural network technique applied to the detection of natively disordered regions in proteins. Bioinformatics 21(16), 3369–3376.

    Article  CAS  PubMed  Google Scholar 

  23. Cheng, J., Sweredoski, M., Baldi, P. (2005) Accurate prediction of protein disordered regions by mining protein structure data. Data Mining Knowledge Discov 11, 213–222.

    Article  Google Scholar 

  24. Pollastri, G., McLysaght, A. (2005) Porter: a new, accurate server for protein secondary structure prediction. Bioinformatics 21(8), 1719–1720.

    Article  CAS  PubMed  Google Scholar 

  25. Coeytaux, K., Poupon, A. (2005) Prediction of unfolded segments in a protein sequence based on amino acid composition. Bioinformatics 21(9), 1891–1900.

    Article  CAS  PubMed  Google Scholar 

  26. Schlessinger, A., Punta, M., Rost, B. (2007) Natively unstructured regions in proteins identified from contact predictions. Bioinformatics 23(18), 2376–2384.

    Article  CAS  PubMed  Google Scholar 

  27. Wang, L., Sauer, U. H. (2008) OnD-CRF: predicting order and disorder in proteins using [corrected] conditional random fields. Bioinformatics 24(11), 1401–1402.

    Article  CAS  PubMed  Google Scholar 

  28. Shimizu, K., Hirose, S., Noguchi, T. (2007) POODLE-S: web application for predicting protein disorder by using physicochemical features and reduced amino acid set of a position-specific scoring matrix. Bioinformatics 23(17), 2337–2338.

    Article  CAS  PubMed  Google Scholar 

  29. Su, C. T., Chen, C. Y., Ou, Y. Y. (2006) Protein disorder prediction by condensed PSSM considering propensity for order or disorder. BMC Bioinformatics 7, 319.

    Article  PubMed  Google Scholar 

  30. Uversky, V. N., Gillespie, J. R., Fink, A. L. (2000) Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins 41(3), 415–427.

    Article  CAS  PubMed  Google Scholar 

  31. Zeev-Ben-Mordehai, T., Rydberg, E. H., Solomon, A., Toker, L., Auld, V. J., Silman, I., Botti, S., Sussman, J. L. (2003) The intracellular domain of the Drosophila cholinesterase-like neural adhesion protein, gliotactin, is natively unfolded. Proteins 53(3), 758–767.

    Article  CAS  PubMed  Google Scholar 

  32. Liu, J., Rost, B. (2003) NORSp: Predictions of long regions without regular secondary structure. Nucleic Acids Res 31(13), 3833–3835.

    Article  CAS  PubMed  Google Scholar 

  33. Liu, J., Tan, H., Rost, B. (2002) Loopy proteins appear conserved in evolution. J Mol Biol 322(1), 53–64.

    Article  CAS  PubMed  Google Scholar 

  34. Dosztanyi, Z., Csizmok, V., Tompa, P., Simon, I. (2005) IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21(16), 3433–3434.

    Article  CAS  PubMed  Google Scholar 

  35. Galzitskaya, O. V., Garbuzynskiy, S. O., Lobanov, M. Y. (2006) FoldUnfold: web server for the prediction of disordered regions in protein chain. Bioinformatics 22(23), 2948–2949.

    Article  CAS  PubMed  Google Scholar 

  36. Callebaut, I., Labesse, G., Durand, P., Poupon, A., Canard, L., Chomilier, J., Henrissat, B., Mornon, J. P. (1997) Deciphering protein sequence information through hydrophobic cluster analysis (HCA): current status and perspectives. Cell Mol Life Sci 53(8), 621–645.

    Article  CAS  PubMed  Google Scholar 

  37. Vacic, V., Oldfield, C. J., Mohan, A., Radivojac, P., Cortese, M. S., Uversky, V. N., Dunker, A. K. (2007) Characterization of molecular recognition features, MoRFs, and their binding partners. J Proteome Res 6(6), 2351–2366.

    Article  CAS  PubMed  Google Scholar 

  38. Oldfield, C. J., Cheng, Y., Cortese, M. S., Romero, P., Uversky, V. N., Dunker, A. K. (2005) Coupled folding and binding with alpha-helix-forming molecular recognition elements. Biochemistry 44(37), 12454–12470.

    Article  CAS  PubMed  Google Scholar 

  39. Bourhis, J., Johansson, K., Receveur-Bréchot, V., Oldfield, C. J., Dunker, A. K., Canard, B., Longhi, S. (2004) The C-terminal domain of measles virus nucleoprotein belongs to the class of intrinsically disordered proteins that fold upon binding to their pohysiological partner. Virus Res 99, 157–167.

    Article  CAS  PubMed  Google Scholar 

  40. John, S. P., Wang, T., Steffen, S., Longhi, S., Schmaljohn, C. S., Jonsson, C. B. (2007) Ebola virus VP30 is an RNA binding protein. J Virol 81(17), 8967–8976.

    Article  CAS  PubMed  Google Scholar 

  41. Wootton, J. C. (1994) Non-globular domains in protein sequences: automated segmentation using complexity measures. Comput Chem 18(3), 269–285.

    Article  CAS  PubMed  Google Scholar 

  42. Kall, L., Krogh, A., Sonnhammer, E. L. (2007) Advantages of combined transmembrane topology and signal peptide prediction – the Phobius web server. Nucleic Acids Res 35(Web Server issue), W429–W432.

    Article  PubMed  Google Scholar 

  43. Bornberg-Bauer, E., Rivals, E., Vingron, M. (1998) Computational approaches to identify leucine zippers. Nucleic Acids Res 26(11), 2740–2746.

    Article  CAS  PubMed  Google Scholar 

  44. Lupas, A., Van Dyke, M., Stock, J. (1991) Predicting coiled coils from protein sequences. Science 252(5009), 1162–1164.

    Article  CAS  Google Scholar 

  45. Baldi, P., Cheng, J., Vullo, A. (2004) Large-scale prediction of disulphide bond connectivity. Adv Neural Inf Process Syst 17, 97–104.

    Google Scholar 

  46. McGuffin, L. J., Bryson, K., Jones, D. T. (2000) The PSIPRED protein structure prediction server. Bioinformatics 16(4), 404–405.

    Article  CAS  PubMed  Google Scholar 

  47. Lieutaud, P., Canard, B., Longhi, S. (2008) MeDor: a metaserver for predicting protein disorder. BMC Genomics 9(Suppl 2), S25.

    Article  PubMed  Google Scholar 

  48. Chandonia, J. M. (2007) StrBioLib: a Java library for development of custom computational structural biology applications. Bioinformatics 23(15), 2018–2020.

    Article  CAS  PubMed  Google Scholar 

  49. Longhi, S., Receveur-Brechot, V., Karlin, D., Johansson, K., Darbon, H., Bhella, D., Yeo, R., Finet, S., Canard, B. (2003) The C-terminal domain of the measles virus nucleoprotein is intrinsically disordered and folds upon binding to the C-terminal moiety of the phosphoprotein. J Biol Chem 278(20), 18638–18648.

    Article  CAS  PubMed  Google Scholar 

  50. Kingston, R. L., Hamel, D. J., Gay, L. S., Dahlquist, F. W., Matthews, B. W. (2004) Structural basis for the attachment of a paramyxoviral polymerase to its template. Proc Natl Acad Sci USA 101(22), 8301–8306.

    Article  CAS  PubMed  Google Scholar 

  51. Morin, B., Bourhis, J. M., Belle, V., Woudstra, M., Carrière, F., BGuigliarelli, B., Fournel, A., Longhi, S. (2006) Assessing induced folding of an intrinsically disordered protein by site-directed spin-labeling EPR spectroscopy. J. Phys. Chem. B 110(41), 20596–20608.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

MeDor was developed with the financial support of the EU VIZIER (http://www.vizier-europe.org). program (CT 2004-511960) and the ANR (ANR-05-MIIM-035-02).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Longhi, S., Lieutaud, P., Canard, B. (2010). Conformational Disorder. In: Carugo, O., Eisenhaber, F. (eds) Data Mining Techniques for the Life Sciences. Methods in Molecular Biology, vol 609. Humana Press. https://doi.org/10.1007/978-1-60327-241-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-241-4_18

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-240-7

  • Online ISBN: 978-1-60327-241-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics