Skip to main content

Electrophysiological Recordings of Voltage-Dependent and Mechanosensitive Currents in Sensory Hair Cells of the Auditory and Vestibular Organs of the Mouse

  • Protocol
  • First Online:
Developmental, Physiological, and Functional Neurobiology of the Inner Ear

Part of the book series: Neuromethods ((NM,volume 176))

Abstract

Electrophysiological characterization of inner ear hair cell properties including assessment of voltage-dependent and mechanosensitive currents has provided invaluable information about their development and maturation in several animal models. Beyond the basic understanding of hair cell properties, electrophysiological investigations combined with the use of different mouse models, pharmacological tools, and exogenous gene expression systems such as those driven by viral vectors have been essential in providing insights into the functional role of various proteins expressed in hair cells, many of which are associated with deafness and/or balance deficits. This chapter provides detailed methods designed to optimize recordings of voltage-dependent and mechanosensitive currents in sensory hair cells of the auditory and vestibular organs of the mammal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fettiplace R, Crawford AC, Evans MG (1992) The hair cell’s mechanoelectrical transducer channel. Ann N Y Acad Sci 656:1–11. https://doi.org/10.1111/j.1749-6632.1992.tb25196.x

    Article  CAS  PubMed  Google Scholar 

  2. Hackney CM, Furness DN (1995) Mechanotransduction in vertebrate hair cells: structure and function of the stereociliary bundle. Am J Phys 268(1 Pt 1):C1–C13. https://doi.org/10.1152/ajpcell.1995.268.1.C1

    Article  CAS  Google Scholar 

  3. Howard J, Roberts WM, Hudspeth AJ (1988) Mechanoelectrical transduction by hair cells. Annu Rev Biophys Biophys Chem 17:99–124. https://doi.org/10.1146/annurev.bb.17.060188.000531

    Article  CAS  PubMed  Google Scholar 

  4. Hudspeth AJ, Corey DP (1977) Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. Proc Natl Acad Sci U S A 74(6):2407–2411. https://doi.org/10.1073/pnas.74.6.2407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Roberts WM, Howard J, Hudspeth AJ (1988) Hair cells: transduction, tuning, and transmission in the inner ear. Annu Rev Cell Biol 4:63–92. https://doi.org/10.1146/annurev.cb.04.110188.000431

    Article  CAS  PubMed  Google Scholar 

  6. Hudspeth AJ, Jacobs R (1979) Stereocilia mediate transduction in vertebrate hair cells (auditory system/cilium/vestibular system). Proc Natl Acad Sci U S A 76(3):1506–1509. https://doi.org/10.1073/pnas.76.3.1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Goodyear RJ, Marcotti W, Kros CJ, Richardson GP (2005) Development and properties of stereociliary link types in hair cells of the mouse cochlea. J Comp Neurol 485(1):75–85. https://doi.org/10.1002/cne.20513

    Article  PubMed  Google Scholar 

  8. Corey DP, Hudspeth AJ (1979) Ionic basis of the receptor potential in a vertebrate hair cell. Nature 281(5733):675–677. https://doi.org/10.1038/281675a0

    Article  CAS  PubMed  Google Scholar 

  9. Denk W, Holt JR, Shepherd GM, Corey DP (1995) Calcium imaging of single stereocilia in hair cells: localization of transduction channels at both ends of tip links. Neuron 15(6):1311–1321. https://doi.org/10.1016/0896-6273(95)90010-1

    Article  CAS  PubMed  Google Scholar 

  10. PMCID: PMC6564293 (Hudspeth AJ. Extracellular current flow and the site of transduction by vertebrate hair cells. J Neurosci. 1982 Jan;2(1):1–10. https://doi.org/10.1523/JNEUROSCI.02-01-00001.1982. PMID: 6275046; PMCID: PMC6564293.)

  11. PMCID: PMC2712647 (Beurg M, Fettiplace R, Nam JH, Ricci AJ. Localization of inner hair cell mechanotransducer channels using high-speed calcium imaging. Nat Neurosci. 2009 May;12(5):553–8. https://doi.org/10.1038/nn.2295. Epub 2009 Mar 29. PMID: 19330002; PMCID: PMC2712647.)

  12. Assad JA, Shepherd GM, Corey DP (1991) Tip-link integrity and mechanical transduction in vertebrate hair cells. Neuron 7(6):985–994. https://doi.org/10.1016/0896-6273(91)90343-x

    Article  CAS  PubMed  Google Scholar 

  13. Holt JR, Pan B, Koussa MA, Asai Y (2014) TMC function in hair cell transduction. Hear Res 311:17–24. https://doi.org/10.1016/j.heares.2014.01.001

    Article  CAS  PubMed  Google Scholar 

  14. Kawashima Y, Geleoc GS, Kurima K, Labay V, Lelli A, Asai Y, Makishima T, Wu DK, Della Santina CC, Holt JR, Griffith AJ (2011) Mechanotransduction in mouse inner ear hair cells requires transmembrane channel-like genes. J Clin Invest 121(12):4796–4809. https://doi.org/10.1172/JCI60405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kurima K, Ebrahim S, Pan B, Sedlacek M, Sengupta P, Millis BA, Cui R, Nakanishi H, Fujikawa T, Kawashima Y, Choi BY, Monahan K, Holt JR, Griffith AJ, Kachar B (2015) TMC1 and TMC2 localize at the site of mechanotransduction in mammalian inner ear hair cell stereocilia. Cell Rep 12(10):1606–1617. https://doi.org/10.1016/j.celrep.2015.07.058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pan B, Akyuz N, Liu XP, Asai Y, Nist-Lund C, Kurima K, Derfler BH, Gyorgy B, Limapichat W, Walujkar S, Wimalasena LN, Sotomayor M, Corey DP, Holt JR (2018) TMC1 forms the pore of mechanosensory transduction channels in vertebrate inner ear hair cells. Neuron 99(4):736–753.e736. https://doi.org/10.1016/j.neuron.2018.07.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pan B, Geleoc GS, Asai Y, Horwitz GC, Kurima K, Ishikawa K, Kawashima Y, Griffith AJ, Holt JR (2013) TMC1 and TMC2 are components of the mechanotransduction channel in hair cells of the mammalian inner ear. Neuron 79(3):504–515. https://doi.org/10.1016/j.neuron.2013.06.019

    Article  CAS  PubMed  Google Scholar 

  18. Waltner JG, Raymond S (1950) On the chemical composition of the human perilymph and endolymph. Laryngoscope 60(9):912–918. https://doi.org/10.1288/00005537-195009000-00003

    Article  CAS  PubMed  Google Scholar 

  19. Dallos P, Zheng J, Cheatham MA (2006) Prestin and the cochlear amplifier. J Physiol 576(Pt 1):37–42. https://doi.org/10.1113/jphysiol.2006.114652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li Y, Liu H, Giffen KP, Chen L, Beisel KW, He DZZ (2018) Transcriptomes of cochlear inner and outer hair cells from adult mice. Sci Data 5:180199. https://doi.org/10.1038/sdata.2018.199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu H, Pecka JL, Zhang Q, Soukup GA, Beisel KW, He DZ (2014) Characterization of transcriptomes of cochlear inner and outer hair cells. J Neurosci 34(33):11085–11095. https://doi.org/10.1523/JNEUROSCI.1690-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jeng JY, Ceriani F, Hendry A, Johnson SL, Yen P, Simmons DD, Kros CJ, Marcotti W (2020) Hair cell maturation is differentially regulated along the tonotopic axis of the mammalian cochlea. J Physiol 598(1):151–170. https://doi.org/10.1113/JP279012

    Article  CAS  PubMed  Google Scholar 

  23. Johnson SL (2015) Membrane properties specialize mammalian inner hair cells for frequency or intensity encoding. elife 4. https://doi.org/10.7554/eLife.08177

  24. Johnson SL, Forge A, Knipper M, Munkner S, Marcotti W (2008) Tonotopic variation in the calcium dependence of neurotransmitter release and vesicle pool replenishment at mammalian auditory ribbon synapses. J Neurosci 28(30):7670–7678. https://doi.org/10.1523/JNEUROSCI.0785-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Johnson SL, Olt J, Cho S, von Gersdorff H, Marcotti W (2017) The coupling between Ca(2+) channels and the exocytotic Ca(2+) sensor at hair cell ribbon synapses varies tonotopically along the mature cochlea. J Neurosci 37(9):2471–2484. https://doi.org/10.1523/JNEUROSCI.2867-16.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lelli A, Asai Y, Forge A, Holt JR, Geleoc GS (2009) Tonotopic gradient in the developmental acquisition of sensory transduction in outer hair cells of the mouse cochlea. J Neurophysiol 101(6):2961–2973. https://doi.org/10.1152/jn.00136.2009

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tang F, Chen X, Jia L, Li H, Li J, Yuan W (2019) Differential gene expression patterns between apical and basal inner hair cells revealed by RNA-Seq. Front Mol Neurosci 12:332. https://doi.org/10.3389/fnmol.2019.00332

    Article  CAS  PubMed  Google Scholar 

  28. Brandon CS, Voelkel-Johnson C, May LA, Cunningham LL (2012) Dissection of adult mouse utricle and adenovirus-mediated supporting-cell infection. J Vis Exp 61. https://doi.org/10.3791/3734

  29. Cunningham LL (2006) The adult mouse utricle as an in vitro preparation for studies of ototoxic-drug-induced sensory hair cell death. Brain Res 1091(1):277–281. https://doi.org/10.1016/j.brainres.2006.01.128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Beurg M, Barlow A, Furness DN, Fettiplace R (2019) A Tmc1 mutation reduces calcium permeability and expression of mechanoelectrical transduction channels in cochlear hair cells. Proc Natl Acad Sci U S A 116(41):20743–20749. https://doi.org/10.1073/pnas.1908058116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fettiplace R, Fuchs PA (1999) Mechanisms of hair cell tuning. Annu Rev Physiol 61:809–834. https://doi.org/10.1146/annurev.physiol.61.1.809

    Article  CAS  PubMed  Google Scholar 

  32. Johnson SL, Marcotti W (2008) Biophysical properties of CaV1.3 calcium channels in gerbil inner hair cells. J Physiol 586(4):1029–1042. https://doi.org/10.1113/jphysiol.2007.145219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Meyer AC, Frank T, Khimich D, Hoch G, Riedel D, Chapochnikov NM, Yarin YM, Harke B, Hell SW, Egner A, Moser T (2009) Tuning of synapse number, structure and function in the cochlea. Nat Neurosci 12(4):444–453. https://doi.org/10.1038/nn.2293

    Article  CAS  PubMed  Google Scholar 

  34. Moser T, Beutner D (2000) Kinetics of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse of the mouse. Proc Natl Acad Sci U S A 97(2):883–888. https://doi.org/10.1073/pnas.97.2.883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Waguespack J, Salles FT, Kachar B, Ricci AJ (2007) Stepwise morphological and functional maturation of mechanotransduction in rat outer hair cells. J Neurosci 27(50):13890–13902. https://doi.org/10.1523/JNEUROSCI.2159-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Johnson SL, Marcotti W, Kros CJ (2005) Increase in efficiency and reduction in Ca2+ dependence of exocytosis during development of mouse inner hair cells. J Physiol 563(Pt 1):177–191. https://doi.org/10.1113/jphysiol.2004.074740

    Article  CAS  PubMed  Google Scholar 

  37. Kros CJ, Ruppersberg JP, Rusch A (1998) Expression of a potassium current in inner hair cells during development of hearing in mice. Nature 394(6690):281–284. https://doi.org/10.1038/28401

    Article  CAS  PubMed  Google Scholar 

  38. Marcotti W, Geleoc GS, Lennan GW, Kros CJ (1999) Transient expression of an inwardly rectifying potassium conductance in developing inner and outer hair cells along the mouse cochlea. Pflugers Arch 439(1–2):113–122. https://doi.org/10.1007/s004249900157

    Article  CAS  PubMed  Google Scholar 

  39. Marcotti W, Johnson SL, Holley MC, Kros CJ (2003) Developmental changes in the expression of potassium currents of embryonic, neonatal and mature mouse inner hair cells. J Physiol 548(Pt 2):383–400. https://doi.org/10.1113/jphysiol.2002.034801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ahituv N, Avraham KB (2000) Auditory and vestibular mouse mutants: models for human deafness. J Basic Clin Physiol Pharmacol 11(3):181–191. https://doi.org/10.1515/jbcpp.2000.11.3.181

    Article  CAS  PubMed  Google Scholar 

  41. Ohlemiller KK (2019) Mouse methods and models for studies in hearing. J Acoust Soc Am 146(5):3668. https://doi.org/10.1121/1.5132550

    Article  PubMed  Google Scholar 

  42. Fang QJ, Wu F, Chai R, Sha SH (2019) Cochlear surface preparation in the adult mouse. J Vis Exp 153. https://doi.org/10.3791/60299

  43. Marcotti W, Kros CJ (1999) Developmental expression of the potassium current IK,n contributes to maturation of mouse outer hair cells. J Physiol 520(Pt 3):653–660. https://doi.org/10.1111/j.1469-7793.1999.00653.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Goutman JD, Pyott SJ (2016) Whole-cell patch-clamp recording of mouse and rat inner hair cells in the intact organ of Corti. Methods Mol Biol 1427:471–485. https://doi.org/10.1007/978-1-4939-3615-1_26

    Article  CAS  PubMed  Google Scholar 

  45. Neher E, Sakmann B (1992) The patch clamp technique. Sci Am 266(3):44–51. https://doi.org/10.1038/scientificamerican0392-44

    Article  CAS  PubMed  Google Scholar 

  46. Gamper N (2013) Ion channels: methods and protocols, Methods in molecular biology, vol 998, 2nd edn. Humana Press, New York

    Book  Google Scholar 

  47. Martina M, Taverna S (2014) Patch-clamp methods and protocols, Methods in molecular biology, vol 1183, 2nd edn. Humana Press, New York

    Book  Google Scholar 

  48. Okada Y (2012) Patch clamp techniques: from beginning to advanced protocols, Springer protocols handbooks. Springer, New York

    Book  Google Scholar 

  49. Grant L, Yi E, Goutman JD, Glowatzki E (2011) Postsynaptic recordings at afferent dendrites contacting cochlear inner hair cells: monitoring multivesicular release at a ribbon synapse. J Vis Exp 48. https://doi.org/10.3791/2442

  50. Indzhykulian AA, Stepanyan R, Nelina A, Spinelli KJ, Ahmed ZM, Belyantseva IA, Friedman TB, Barr-Gillespie PG, Frolenkov GI (2013) Molecular remodeling of tip links underlies mechanosensory regeneration in auditory hair cells. PLoS Biol 11(6):e1001583. https://doi.org/10.1371/journal.pbio.1001583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Corey DP, Hudspeth AJ (1980) Mechanical stimulation and micromanipulation with piezoelectric bimorph elements. J Neurosci Methods 3(2):183–202. https://doi.org/10.1016/0165-0270(80)90025-4

    Article  CAS  PubMed  Google Scholar 

  52. Geleoc GS, Holt JR (2003) Developmental acquisition of sensory transduction in hair cells of the mouse inner ear. Nat Neurosci 6(10):1019–1020. https://doi.org/10.1038/nn1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. PMCID: PMC2267152 (Beurg M, Nam JH, Crawford A, Fettiplace R. The actions of calcium on hair bundle mechanics in mammalian cochlear hair cells. Biophys J. 2008 Apr 1;94(7):2639–53. https://doi.org/10.1529/biophysj.107.123257. Epub 2008 Jan 4. PMID: 18178649; PMCID: PMC2267152)

  54. PMCID: PMC6757600 (Ricci AJ, Crawford AC, Fettiplace R. Mechanisms of active hair bundle motion in auditory hair cells. J Neurosci. 2002 Jan 1;22(1):44–52. https://doi.org/10.1523/JNEUROSCI.22-01-00044.2002. PMID: 11756487; PMCID: PMC6757600.)

  55. PMCID: PMC6772778 (Ricci AJ, Crawford AC, Fettiplace R. Active hair bundle motion linked to fast transducer adaptation in auditory hair cells. J Neurosci. 2000 Oct 1;20(19):7131–42. https://doi.org/10.1523/JNEUROSCI.20-19-07131.2000. PMID: 11007868; PMCID: PMC6772778.)

  56. PMCID: PMC1288017 (Le Goff L, Bozovic D, Hudspeth AJ. Adaptive shift in the domain of negative stiffness during spontaneous oscillation by hair bundles from the internal ear. Proc Natl Acad Sci U S A. 2005 Nov 22;102(47):16996–7001. https://doi.org/10.1073/pnas.0508731102. Epub 2005 Nov 15. PMID: 16287969; PMCID: PMC1288017.)

  57. Howard J, Hudspeth AJ (1988) Compliance of the hair bundle associated with gating of mechanoelectrical transduction channels in the bullfrog’s saccular hair cell. Neuron 1(3):189–199. https://doi.org/10.1016/0896-6273(88)90139-0

    Article  CAS  PubMed  Google Scholar 

  58. Peng AW, Ricci AJ (2016) Glass probe stimulation of hair cell stereocilia. Methods Mol Biol 1427:487–500. https://doi.org/10.1007/978-1-4939-3615-1_27

    Article  CAS  PubMed  Google Scholar 

  59. Kros CJ, Rusch A, Richardson GP (1992) Mechano-electrical transducer currents in hair cells of the cultured neonatal mouse cochlea. Proc Biol Sci 249(1325):185–193. https://doi.org/10.1098/rspb.1992.0102

    Article  CAS  PubMed  Google Scholar 

  60. Alagramam KN, Goodyear RJ, Geng R, Furness DN, van Aken AF, Marcotti W, Kros CJ, Richardson GP (2011) Mutations in protocadherin 15 and cadherin 23 affect tip links and mechanotransduction in mammalian sensory hair cells. PLoS One 6(4):e19183. https://doi.org/10.1371/journal.pone.0019183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Beurg M, Xiong W, Zhao B, Muller U, Fettiplace R (2015) Subunit determination of the conductance of hair-cell mechanotransducer channels. Proc Natl Acad Sci U S A 112(5):1589–1594. https://doi.org/10.1073/pnas.1420906112

    Article  CAS  PubMed  Google Scholar 

  62. Caprara GA, Mecca AA, Wang Y, Ricci AJ, Peng AW (2019) Hair bundle stimulation mode modifies manifestations of mechanotransduction adaptation. J Neurosci 39(46):9098–9106. https://doi.org/10.1523/JNEUROSCI.1408-19.2019

    Article  PubMed  PubMed Central  Google Scholar 

  63. Corns LF, Johnson SL, Kros CJ, Marcotti W (2014) Calcium entry into stereocilia drives adaptation of the mechanoelectrical transducer current of mammalian cochlear hair cells. Proc Natl Acad Sci U S A 111(41):14918–14923. https://doi.org/10.1073/pnas.1409920111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Corns LF, Johnson SL, Kros CJ, Marcotti W (2016) Tmc1 point mutation affects Ca2+ sensitivity and block by dihydrostreptomycin of the mechanoelectrical transducer current of mouse outer hair cells. J Neurosci 36(2):336–349. https://doi.org/10.1523/JNEUROSCI.2439-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Corns LF, Johnson SL, Roberts T, Ranatunga KM, Hendry A, Ceriani F, Safieddine S, Steel KP, Forge A, Petit C, Furness DN, Kros CJ, Marcotti W (2018) Mechanotransduction is required for establishing and maintaining mature inner hair cells and regulating efferent innervation. Nat Commun 9(1):4015. https://doi.org/10.1038/s41467-018-06307-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Fettiplace R, Kim KX (2014) The physiology of mechanoelectrical transduction channels in hearing. Physiol Rev 94(3):951–986. https://doi.org/10.1152/physrev.00038.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Geleoc GS, Lennan GW, Richardson GP, Kros CJ (1997) A quantitative comparison of mechanoelectrical transduction in vestibular and auditory hair cells of neonatal mice. Proc Biol Sci 264(1381):611–621. https://doi.org/10.1098/rspb.1997.0087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Marcotti W, Corns LF, Goodyear RJ, Rzadzinska AK, Avraham KB, Steel KP, Richardson GP, Kros CJ (2016) The acquisition of mechano-electrical transducer current adaptation in auditory hair cells requires myosin VI. J Physiol 594(13):3667–3681. https://doi.org/10.1113/JP272220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Marcotti W, van Netten SM, Kros CJ (2005) The aminoglycoside antibiotic dihydrostreptomycin rapidly enters mouse outer hair cells through the mechano-electrical transducer channels. J Physiol 567(Pt 2):505–521. https://doi.org/10.1113/jphysiol.2005.085951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Crawford AC, Fettiplace R (1985) The mechanical properties of ciliary bundles of turtle cochlear hair cells. J Physiol 364:359–379. https://doi.org/10.1113/jphysiol.1985.sp015750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kros CJ, Lennan GWT, Richardson GP (1995) Transducer currents and bundle movements in outer hair cells of neonatal mice. In: Flock A (ed) Active hearing. Elsevier Science, Oxford, pp 113–125

    Google Scholar 

  72. Kros CJ, Rüsch A, Lennan GWR, Richardson GP (1993) Voltage dependence of transducer currents in outer hair cells of neonatal mice. In: GDuifuis H, Horst JW, van Dijk P, van Netten SM (eds) Biophysics of hair cell sensory system. World Scientific, Singapore, pp 141–150

    Google Scholar 

  73. Ohmori H (1985) Mechano-electrical transduction currents in isolated vestibular hair cells of the chick. J Physiol 359:189–217. https://doi.org/10.1113/jphysiol.1985.sp015581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ricci AJ, Crawford AC, Fettiplace R (2000) Active hair bundle motion linked to fast transducer adaptation in auditory hair cells. J Neurosci 20(19):7131–7142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Caprara GA, Mecca AA, Peng AW (2020) Decades-old model of slow adaptation in sensory hair cells is not supported in mammals. Sci Adv 6(33):eabb4922. https://doi.org/10.1126/sciadv.abb4922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fridberger A, Tomo I, Ulfendahl M, Boutet de Monvel J (2006) Imaging hair cell transduction at the speed of sound: dynamic behavior of mammalian stereocilia. Proc Natl Acad Sci U S A 103(6):1918–1923. https://doi.org/10.1073/pnas.0507231103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Peng AW, Effertz T, Ricci AJ (2013) Adaptation of mammalian auditory hair cell mechanotransduction is independent of calcium entry. Neuron 80(4):960–972. https://doi.org/10.1016/j.neuron.2013.08.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Dinklo T, Meulenberg CJ, van Netten SM (2007) Frequency-dependent properties of a fluid jet stimulus: calibration, modeling, and application to cochlear hair cell bundles. J Assoc Res Otolaryngol 8(2):167–182. https://doi.org/10.1007/s10162-007-0080-0

    Article  PubMed  PubMed Central  Google Scholar 

  79. Vollrath MA, Eatock RA (2003) Time course and extent of mechanotransducer adaptation in mouse utricular hair cells: comparison with frog saccular hair cells. J Neurophysiol 90(4):2676–2689. https://doi.org/10.1152/jn.00893.2002

    Article  PubMed  Google Scholar 

  80. Corey DP, Hudspeth AJ (1983) Kinetics of the receptor current in bullfrog saccular hair cells. J Neurosci 3(5):962–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Eatock RA, Corey DP, Hudspeth AJ (1987) Adaptation of mechanoelectrical transduction in hair cells of the bullfrog’s sacculus. J Neurosci 7(9):2821–2836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Holt JR, Corey DP, Eatock RA (1997) Mechanoelectrical transduction and adaptation in hair cells of the mouse utricle, a low-frequency vestibular organ. J Neurosci 17(22):8739–8748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Holton T, Hudspeth AJ (1986) The transduction channel of hair cells from the bull-frog characterized by noise analysis. J Physiol 375:195–227. https://doi.org/10.1113/jphysiol.1986.sp016113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Segev A, Garcia-Oscos F, Kourrich S (2016) Whole-cell patch-clamp recordings in brain slices. J Vis Exp 112. https://doi.org/10.3791/54024

  85. Beutner D, Moser T (2001) The presynaptic function of mouse cochlear inner hair cells during development of hearing. J Neurosci 21(13):4593–4599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Glowatzki E, Fuchs PA (2002) Transmitter release at the hair cell ribbon synapse. Nat Neurosci 5(2):147–154. https://doi.org/10.1038/nn796

    Article  CAS  PubMed  Google Scholar 

  87. Johnson SL, Eckrich T, Kuhn S, Zampini V, Franz C, Ranatunga KM, Roberts TP, Masetto S, Knipper M, Kros CJ, Marcotti W (2011) Position-dependent patterning of spontaneous action potentials in immature cochlear inner hair cells. Nat Neurosci 14(6):711–717. https://doi.org/10.1038/nn.2803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Johnson SL, Kennedy HJ, Holley MC, Fettiplace R, Marcotti W (2012) The resting transducer current drives spontaneous activity in prehearing mammalian cochlear inner hair cells. J Neurosci 32(31):10479–10483. https://doi.org/10.1523/JNEUROSCI.0803-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Marcotti W, Johnson SL, Rusch A, Kros CJ (2003) Sodium and calcium currents shape action potentials in immature mouse inner hair cells. J Physiol 552(Pt 3):743–761. https://doi.org/10.1113/jphysiol.2003.043612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Jeng JY, Carlton AJ, Johnson SL, Brown SDM, Holley MC, Bowl MR, Marcotti W (2021) Biophysical and morphological changes in inner hair cells and their efferent innervation in the ageing mouse cochlea. J Physiol 599(1):269–287. https://doi.org/10.1113/JP280256

    Article  CAS  PubMed  Google Scholar 

  91. Oliver D, Knipper M, Derst C, Fakler B (2003) Resting potential and submembrane calcium concentration of inner hair cells in the isolated mouse cochlea are set by KCNQ-type potassium channels. J Neurosci 23(6):2141–2149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Marcotti W, Johnson SL, Kros CJ. A transiently expressed SK current sustains and modulates action potential activity in immature mouse inner hair cells. J Physiol. 2004 Nov 1;560(Pt 3):691–708. https://doi.org/10.1113/jphysiol.2004.072868. Epub 2004 Aug 26. PMID: 15331671; PMCID: PMC1665291.

  93. Nouvian R (2007) Temperature enhances exocytosis efficiency at the mouse inner hair cell ribbon synapse. J Physiol 584(Pt 2):535–542. https://doi.org/10.1113/jphysiol.2007.139675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Brandt A, Khimich D, Moser T (2005) Few CaV1.3 channels regulate the exocytosis of a synaptic vesicle at the hair cell ribbon synapse. J Neurosci 25(50):11577–11585. https://doi.org/10.1523/JNEUROSCI.3411-05.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Colclasure JC, Holt JR (2003) Transduction and adaptation in sensory hair cells of the mammalian vestibular system. Gravit Space Biol Bull 16(2):61–70

    PubMed  Google Scholar 

  96. Kennedy HJ, Evans MG, Crawford AC, Fettiplace R (2003) Fast adaptation of mechanoelectrical transducer channels in mammalian cochlear hair cells. Nat Neurosci 6(8):832–836. https://doi.org/10.1038/nn1089

    Article  CAS  PubMed  Google Scholar 

  97. Kros CJ, Marcotti W, van Netten SM, Self TJ, Libby RT, Brown SD, Richardson GP, Steel KP (2002) Reduced climbing and increased slipping adaptation in cochlear hair cells of mice with Myo7a mutations. Nat Neurosci 5(1):41–47. https://doi.org/10.1038/nn784

    Article  CAS  PubMed  Google Scholar 

  98. Stauffer EA, Holt JR (2007) Sensory transduction and adaptation in inner and outer hair cells of the mouse auditory system. J Neurophysiol 98(6):3360–3369. https://doi.org/10.1152/jn.00914.2007

    Article  PubMed  Google Scholar 

  99. Stepanyan R, Frolenkov GI (2009) Fast adaptation and Ca2+ sensitivity of the mechanotransducer require myosin-XVa in inner but not outer cochlear hair cells. J Neurosci 29(13):4023–4034. https://doi.org/10.1523/JNEUROSCI.4566-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank their many mentors who have trained them in these different techniques and have shared several technical tips highlighted in this review. To cite a few, the authors wish to thank Dr. Corné Kros (PhD co-mentor for Dr. Geleoc and PhD and postdoctoral mentor for Dr. Johnson), Dr. Walter Marcotti (postdoctoral mentor of Dr. Johnson), Dr. Gregory Frolenkov (postdoctoral mentor of Dr. Indzhykulian) as well as Dr. David Corey (postdoctoral mentor for Drs. Geleoc and Indzhykulian) and Dr. Jonathan Ashmore (postdoctoral mentor for Dr. Geleoc). The authors also would like to thank Dr. Corne Kros for initially developing the fluid jet some 30 years ago as well as Drs. David Corey and Jim Hudspeth for the development of hair bundle micromanipulation with piezoelectric bimorph elements. We also thank Dr. David Corey for providing images for this publication and Dr. Walter Marcotti who contributed to the development of the dissection techniques of the organ of Corti as described in this chapter. We thank Dr. Corne Kros for his feedback on a previous version of this manuscript. A.A.I. is supported by the NIH grant R01DC017166 and the Bertarelli Program in Translational Neuroscience and Neuroengineering. G.S.G work is supported by the NIH grant RO1DC008853, the Barber Research fund for Gene therapy for Genetic Deafness and the US-Israel Binational Science foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gwenaëlle S. G. Géléoc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Indzhykulian, A.A., Johnson, S.L., Géléoc, G.S.G. (2022). Electrophysiological Recordings of Voltage-Dependent and Mechanosensitive Currents in Sensory Hair Cells of the Auditory and Vestibular Organs of the Mouse. In: Groves, A.K. (eds) Developmental, Physiological, and Functional Neurobiology of the Inner Ear. Neuromethods, vol 176. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2022-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2022-9_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2021-2

  • Online ISBN: 978-1-0716-2022-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics