Skip to main content

An Overview of Methods for Detecting eIF2α Phosphorylation and the Integrated Stress Response

  • Protocol
  • First Online:
The Integrated Stress Response

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2428))

Abstract

Phosphorylation of the translation initiation factor eIF2α is an adaptive signaling event that is essential for cell and organismal survival from yeast to humans. It is central to the integrated stress response (ISR) that maintains cellular homeostasis in the face of threats ranging from viral infection, amino acid, oxygen, and heme deprivation to the accumulation of misfolded proteins in the endoplasmic reticulum. Phosphorylation of eIF2α has broad physiological, pathological, and therapeutic relevance. However, despite more than two decades of research and growing pharmacological interest, phosphorylation of eIF2α remains difficult to detect and quantify, because of its transient nature and because substoichiometric amounts of this modification are sufficient to profoundly reshape cellular physiology. This review aims to provide a roadmap for facilitating a robust evaluation of eIF2α phosphorylation and its downstream consequences in cells and organisms.

Agnieszka Krzyzosiak and Aleksandra P. Pitera should be considered equal first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wek RC (2018) Role of eIF2alpha kinases in translational control and adaptation to cellular stress. Cold Spring Harb Perspect Biol 10(7):a032870. https://doi.org/10.1101/cshperspect.a032870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cao SS, Kaufman RJ (2012) Unfolded protein response. Curr Biol 22(16):R622–R626. https://doi.org/10.1016/j.cub.2012.07.004

    Article  CAS  PubMed  Google Scholar 

  3. Sonenberg N, Hinnebusch AG (2009) Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136(4):731–745. https://doi.org/10.1016/j.cell.2009.01.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Merrick WC, Pavitt GD (2018) Protein synthesis initiation in eukaryotic cells. Cold Spring Harb Perspect Biol 10(12):a033092. https://doi.org/10.1101/cshperspect.a033092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Marintchev A, Ito T (2020) eIF2B and the integrated stress response: a structural and mechanistic view. Biochemistry 59(13):1299–1308. https://doi.org/10.1021/acs.biochem.0c00132

    Article  CAS  PubMed  Google Scholar 

  6. Pilla E, Schneider K, Bertolotti A (2017) Coping with protein quality control failure. Annu Rev Cell Dev Biol 33:439–465. https://doi.org/10.1146/annurev-cellbio-111315-125334

    Article  CAS  PubMed  Google Scholar 

  7. Jousse C, Oyadomari S, Novoa I et al (2003) Inhibition of a constitutive translation initiation factor 2alpha phosphatase, CReP, promotes survival of stressed cells. J Cell Biol 163(4):767–775. https://doi.org/10.1083/jcb.200308075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Novoa I, Zeng H, Harding HP et al (2001) Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2alpha. J Cell Biol 153(5):1011–1022. https://doi.org/10.1083/jcb.153.5.1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schneider K, Nelson GM, Watson JL et al (2020) Protein stability buffers the cost of translation attenuation following eIF2alpha phosphorylation. Cell Rep 32(11):108154. https://doi.org/10.1016/j.celrep.2020.108154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Costa-Mattioli M, Walter P (2020) The integrated stress response: from mechanism to disease. Science 368(6489):eaat5314. https://doi.org/10.1126/science.aat5314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ishimura R, Nagy G, Dotu I et al (2016) Activation of GCN2 kinase by ribosome stalling links translation elongation with translation initiation. Elife 5:e14295. https://doi.org/10.7554/eLife.14295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Young SK, Wek RC (2016) Upstream open Reading frames differentially regulate gene-specific translation in the integrated stress response. J Biol Chem 291(33):16927–16935. https://doi.org/10.1074/jbc.R116.733899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Luh LM, Bertolotti A (2020) Potential benefit of manipulating protein quality control systems in neurodegenerative diseases. Curr Opin Neurobiol 61:125–132. https://doi.org/10.1016/j.conb.2020.02.009

    Article  CAS  PubMed  Google Scholar 

  14. Dever TE, Feng L, Wek RC et al (1992) Phosphorylation of initiation factor 2 alpha by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast. Cell 68(3):585–596. https://doi.org/10.1016/0092-8674(92)90193-g

    Article  CAS  PubMed  Google Scholar 

  15. Scheuner D, Song B, McEwen E et al (2001) Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol Cell 7(6):1165–1176. https://doi.org/10.1016/s1097-2765(01)00265-9

    Article  CAS  PubMed  Google Scholar 

  16. Harding HP, Zhang Y, Bertolotti A et al (2000) Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell 5(5):897–904. https://doi.org/10.1016/s1097-2765(00)80330-5

    Article  CAS  PubMed  Google Scholar 

  17. Harding HP, Zeng H, Zhang Y et al (2001) Diabetes mellitus and exocrine pancreatic dysfunction in perk−/− mice reveals a role for translational control in secretory cell survival. Mol Cell 7(6):1153–1163. https://doi.org/10.1016/s1097-2765(01)00264-7

    Article  CAS  PubMed  Google Scholar 

  18. Zhang W, Feng D, Li Y et al (2006) PERK EIF2AK3 control of pancreatic beta cell differentiation and proliferation is required for postnatal glucose homeostasis. Cell Metab 4(6):491–497. https://doi.org/10.1016/j.cmet.2006.11.002

    Article  CAS  PubMed  Google Scholar 

  19. Zhang P, McGrath B, Li S et al (2002) The PERK eukaryotic initiation factor 2 alpha kinase is required for the development of the skeletal system, postnatal growth, and the function and viability of the pancreas. Mol Cell Biol 22(11):3864–3874. https://doi.org/10.1128/mcb.22.11.3864-3874.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gao Y, Sartori DJ, Li C et al (2012) PERK is required in the adult pancreas and is essential for maintenance of glucose homeostasis. Mol Cell Biol 32(24):5129–5139. https://doi.org/10.1128/MCB.01009-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang P, McGrath BC, Reinert J et al (2002) The GCN2 eIF2alpha kinase is required for adaptation to amino acid deprivation in mice. Mol Cell Biol 22(19):6681–6688. https://doi.org/10.1128/mcb.22.19.6681-6688.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Harding HP, Zhang Y, Scheuner D et al (2009) Ppp1r15 gene knockout reveals an essential role for translation initiation factor 2 alpha (eIF2alpha) dephosphorylation in mammalian development. Proc Natl Acad Sci U S A 106(6):1832–1837. https://doi.org/10.1073/pnas.0809632106

    Article  PubMed  PubMed Central  Google Scholar 

  23. Delepine M, Nicolino M, Barrett T et al (2000) EIF2AK3, encoding translation initiation factor 2-alpha kinase 3, is mutated in patients with Wolcott-Rallison syndrome. Nat Genet 25(4):406–409. https://doi.org/10.1038/78085

    Article  CAS  PubMed  Google Scholar 

  24. Julier C, Nicolino M (2010) Wolcott-Rallison syndrome. Orphanet J Rare Dis 5:29. https://doi.org/10.1186/1750-1172-5-29

    Article  PubMed  PubMed Central  Google Scholar 

  25. Abdulkarim B, Nicolino M, Igoillo-Esteve M et al (2015) A missense mutation in PPP1R15B causes a syndrome including diabetes, short stature, and microcephaly. Diabetes 64(11):3951–3962. https://doi.org/10.2337/db15-0477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kernohan KD, Tetreault M, Liwak-Muir U et al (2015) Homozygous mutation in the eukaryotic translation initiation factor 2alpha phosphatase gene, PPP1R15B, is associated with severe microcephaly, short stature and intellectual disability. Hum Mol Genet 24(22):6293–6300. https://doi.org/10.1093/hmg/ddv337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hoglinger GU, Melhem NM, Dickson DW et al (2011) Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy. Nat Genet 43(7):699–705. https://doi.org/10.1038/ng.859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yuan SH, Hiramatsu N, Liu Q et al (2018) Tauopathy-associated PERK alleles are functional hypomorphs that increase neuronal vulnerability to ER stress. Hum Mol Genet 27(22):3951–3963. https://doi.org/10.1093/hmg/ddy297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bruch J, Kurz C, Vasiljevic A et al (2015) Early neurodegeneration in the brain of a child without functional PKR-like endoplasmic reticulum kinase. J Neuropathol Exp Neurol 74(8):850–857. https://doi.org/10.1097/NEN.0000000000000224

    Article  PubMed  Google Scholar 

  30. Eyries M, Montani D, Girerd B et al (2014) EIF2AK4 mutations cause pulmonary veno-occlusive disease, a recessive form of pulmonary hypertension. Nat Genet 46(1):65–69. https://doi.org/10.1038/ng.2844

    Article  CAS  PubMed  Google Scholar 

  31. Hadinnapola C, Bleda M, Haimel M et al (2017) Phenotypic characterization of EIF2AK4 mutation carriers in a large cohort of patients diagnosed clinically with pulmonary arterial hypertension. Circulation 136(21):2022–2033. https://doi.org/10.1161/CIRCULATIONAHA.117.028351

    Article  PubMed  PubMed Central  Google Scholar 

  32. Galie N, Humbert M, Vachiery JL et al (2016) 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J 37(1):67–119. https://doi.org/10.1093/eurheartj/ehv317

    Article  PubMed  Google Scholar 

  33. Nossent EJ, Antigny F, Montani D et al (2018) Pulmonary vascular remodeling patterns and expression of general control nonderepressible 2 (GCN2) in pulmonary veno-occlusive disease. J Heart Lung Transplant 37(5):647–655. https://doi.org/10.1016/j.healun.2017.09.022

    Article  PubMed  Google Scholar 

  34. Wright GEB, Caron NS, Ng B et al (2020) Gene expression profiles complement the analysis of genomic modifiers of the clinical onset of Huntington disease. Hum Mol Genet 29(16):2788–2802. https://doi.org/10.1093/hmg/ddaa184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bullido MJ, Martinez-Garcia A, Tenorio R et al (2008) Double stranded RNA activated EIF2 alpha kinase (EIF2AK2; PKR) is associated with Alzheimer’s disease. Neurobiol Aging 29(8):1160–1166. https://doi.org/10.1016/j.neurobiolaging.2007.02.023

    Article  CAS  PubMed  Google Scholar 

  36. Costa-Mattioli M, Gobert D, Harding H et al (2005) Translational control of hippocampal synaptic plasticity and memory by the eIF2alpha kinase GCN2. Nature 436(7054):1166–1173. https://doi.org/10.1038/nature03897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Costa-Mattioli M, Gobert D, Stern E et al (2007) eIF2alpha phosphorylation bidirectionally regulates the switch from short- to long-term synaptic plasticity and memory. Cell 129(1):195–206. https://doi.org/10.1016/j.cell.2007.01.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Trinh MA, Kaphzan H, Wek RC et al (2012) Brain-specific disruption of the eIF2alpha kinase PERK decreases ATF4 expression and impairs behavioral flexibility. Cell Rep 1(6):676–688. https://doi.org/10.1016/j.celrep.2012.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhu PJ, Huang W, Kalikulov D et al (2011) Suppression of PKR promotes network excitability and enhanced cognition by interferon-gamma-mediated disinhibition. Cell 147(6):1384–1396. https://doi.org/10.1016/j.cell.2011.11.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Harding HP, Zhang Y, Ron D (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397(6716):271–274. https://doi.org/10.1038/16729

    Article  CAS  PubMed  Google Scholar 

  41. Lu L, Han AP, Chen JJ (2001) Translation initiation control by heme-regulated eukaryotic initiation factor 2alpha kinase in erythroid cells under cytoplasmic stresses. Mol Cell Biol 21(23):7971–7980. https://doi.org/10.1128/MCB.21.23.7971-7980.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang F, Romano PR, Nagamura-Inoue T et al (2001) Binding of double-stranded RNA to protein kinase PKR is required for dimerization and promotes critical autophosphorylation events in the activation loop. J Biol Chem 276(27):24946–24958. https://doi.org/10.1074/jbc.M102108200

    Article  CAS  PubMed  Google Scholar 

  43. Kinoshita E, Kinoshita-Kikuta E, Takiyama K et al (2006) Phosphate-binding tag, a new tool to visualize phosphorylated proteins. Mol Cell Proteomics 5(4):749–757. https://doi.org/10.1074/mcp.T500024-MCP200

    Article  CAS  PubMed  Google Scholar 

  44. Yang L, Xue Z, He Y et al (2010) A Phos-tag-based approach reveals the extent of physiological endoplasmic reticulum stress. PLoS One 5(7):e11621. https://doi.org/10.1371/journal.pone.0011621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Krutzik PO, Irish JM, Nolan GP et al (2004) Analysis of protein phosphorylation and cellular signaling events by flow cytometry: techniques and clinical applications. Clin Immunol 110(3):206–221. https://doi.org/10.1016/j.clim.2003.11.009

    Article  CAS  PubMed  Google Scholar 

  46. Rabouw HH, Langereis MA, Anand AA et al (2019) Small molecule ISRIB suppresses the integrated stress response within a defined window of activation. Proc Natl Acad Sci U S A 116(6):2097–2102. https://doi.org/10.1073/pnas.1815767116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Eglen RM, Reisine T, Roby P et al (2008) The use of AlphaScreen technology in HTS: current status. Curr Chem Genomics 1:2–10. https://doi.org/10.2174/1875397300801010002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sidrauski C, Acosta-Alvear D, Khoutorsky A et al (2013) Pharmacological brake-release of mRNA translation enhances cognitive memory. Elife 2:e00498. https://doi.org/10.7554/eLife.00498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ito T, Marintchev A, Wagner G (2004) Solution structure of human initiation factor eIF2alpha reveals homology to the elongation factor eEF1B. Structure 12(9):1693–1704. https://doi.org/10.1016/j.str.2004.07.010

    Article  CAS  PubMed  Google Scholar 

  50. Carrara M, Sigurdardottir A, Bertolotti A (2017) Decoding the selectivity of eIF2alpha holophosphatases and PPP1R15A inhibitors. Nat Struct Mol Biol 24(9):708–716. https://doi.org/10.1038/nsmb.3443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bertolotti A (2018) The split protein phosphatase system. Biochem J 475(23):3707–3723. https://doi.org/10.1042/BCJ20170726

    Article  CAS  PubMed  Google Scholar 

  52. Chen R, Rato C, Yan Y et al (2015) G-actin provides substrate-specificity to eukaryotic initiation factor 2alpha holophosphatases. Elife 4:e04871. https://doi.org/10.7554/eLife.04871

    Article  PubMed Central  Google Scholar 

  53. Harding HP, Novoa I, Zhang Y et al (2000) Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 6(5):1099–1108. https://doi.org/10.1016/s1097-2765(00)00108-8

    Article  CAS  PubMed  Google Scholar 

  54. Vattem KM, Wek RC (2004) Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc Natl Acad Sci U S A 101(31):11269–11274. https://doi.org/10.1073/pnas.0400541101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Iwawaki T, Akai R, Toyoshima T et al (2017) Transgenic mouse model for imaging of ATF4 translational activation-related cellular stress responses in vivo. Sci Rep 7:46230. https://doi.org/10.1038/srep46230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fusakio ME, Willy JA, Wang Y et al (2016) Transcription factor ATF4 directs basal and stress-induced gene expression in the unfolded protein response and cholesterol metabolism in the liver. Mol Biol Cell 27(9):1536–1551. https://doi.org/10.1091/mbc.E16-01-0039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chaveroux C, Carraro V, Canaple L et al (2015) In vivo imaging of the spatiotemporal activity of the eIF2alpha-ATF4 signaling pathway: insights into stress and related disorders. Sci Signal 8(374):rs5. https://doi.org/10.1126/scisignal.aaa0549

    Article  CAS  PubMed  Google Scholar 

  58. Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8(7):519–529. https://doi.org/10.1038/nrm2199

    Article  CAS  PubMed  Google Scholar 

  59. Oyadomari S, Mori M (2004) Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11(4):381–389. https://doi.org/10.1038/sj.cdd.4401373

    Article  CAS  PubMed  Google Scholar 

  60. Mori K (2000) Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell 101(5):451–454. https://doi.org/10.1016/s0092-8674(00)80855-7

    Article  CAS  PubMed  Google Scholar 

  61. Ye J, Rawson RB, Komuro R et al (2000) ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol Cell 6(6):1355–1364. https://doi.org/10.1016/s1097-2765(00)00133-7

    Article  CAS  PubMed  Google Scholar 

  62. Wong WL, Brostrom MA, Kuznetsov G et al (1993) Inhibition of protein synthesis and early protein processing by thapsigargin in cultured cells. Biochem J 289(Pt 1):71–79. https://doi.org/10.1042/bj2890071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dermit M, Dodel M, Mardakheh FK (2017) Methods for monitoring and measurement of protein translation in time and space. Mol BioSyst 13(12):2477–2488. https://doi.org/10.1039/c7mb00476a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dieterich DC, Lee JJ, Link AJ et al (2007) Labeling, detection and identification of newly synthesized proteomes with bioorthogonal non-canonical amino-acid tagging. Nat Protoc 2(3):532–540. https://doi.org/10.1038/nprot.2007.52

    Article  PubMed  Google Scholar 

  65. Howden AJ, Geoghegan V, Katsch K et al (2013) QuaNCAT: quantitating proteome dynamics in primary cells. Nat Methods 10(4):343–346. https://doi.org/10.1038/nmeth.2401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Das I, Krzyzosiak A, Schneider K et al (2015) Preventing proteostasis diseases by selective inhibition of a phosphatase regulatory subunit. Science 348(6231):239–242. https://doi.org/10.1126/science.aaa4484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Krzyzosiak A, Sigurdardottir A, Luh L et al (2018) Target-based discovery of an inhibitor of the regulatory phosphatase PPP1R15B. Cell 174(5):1216–1228. e1219. https://doi.org/10.1016/j.cell.2018.06.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tsaytler P, Harding HP, Ron D et al (2011) Selective inhibition of a regulatory subunit of protein phosphatase 1 restores proteostasis. Science 332(6025):91–94. https://doi.org/10.1126/science.1201396

    Article  CAS  PubMed  Google Scholar 

  69. Schmidt EK, Clavarino G, Ceppi M et al (2009) SUnSET, a nonradioactive method to monitor protein synthesis. Nat Methods 6(4):275–277. https://doi.org/10.1038/nmeth.1314

    Article  CAS  PubMed  Google Scholar 

  70. Aviner R, Geiger T, Elroy-Stein O (2013) Novel proteomic approach (PUNCH-P) reveals cell cycle-specific fluctuations in mRNA translation. Genes Dev 27(16):1834–1844. https://doi.org/10.1101/gad.219105.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Follo C, Vidoni C, Morani F et al (2019) Amino acid response by Halofuginone in cancer cells triggers autophagy through proteasome degradation of mTOR. Cell Commun Signal 17(1):39. https://doi.org/10.1186/s12964-019-0354-2

    Article  PubMed  PubMed Central  Google Scholar 

  72. Perry BD, Rahnert JA, Xie Y et al (2018) Palmitate-induced ER stress and inhibition of protein synthesis in cultured myotubes does not require toll-like receptor 4. PLoS One 13(1):e0191313. https://doi.org/10.1371/journal.pone.0191313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Marciano R, Leprivier G, Rotblat B (2018) Puromycin labeling does not allow protein synthesis to be measured in energy-starved cells. Cell Death Dis 9(2):39. https://doi.org/10.1038/s41419-017-0056-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ingolia NT (2014) Ribosome profiling: new views of translation, from single codons to genome scale. Nat Rev Genet 15(3):205–213. https://doi.org/10.1038/nrg3645

    Article  CAS  PubMed  Google Scholar 

  75. Piccirillo CA, Bjur E, Topisirovic I et al (2014) Translational control of immune responses: from transcripts to translatomes. Nat Immunol 15(6):503–511. https://doi.org/10.1038/ni.2891

    Article  CAS  PubMed  Google Scholar 

  76. Gonen N, Sabath N, Burge CB et al (2019) Widespread PERK-dependent repression of ER targets in response to ER stress. Sci Rep 9(1):4330. https://doi.org/10.1038/s41598-019-38705-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Greenman IC, Gomez E, Moore CE et al (2007) Distinct glucose-dependent stress responses revealed by translational profiling in pancreatic beta-cells. J Endocrinol 192(1):179–187. https://doi.org/10.1677/joe.1.06898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Guan BJ, van Hoef V, Jobava R et al (2017) A unique ISR program determines cellular responses to chronic stress. Mol Cell 68(5):885–900. e886. https://doi.org/10.1016/j.molcel.2017.11.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to the Bertolotti lab members for discussions and comments, D. Alessi and M. Goedert for comments on the manuscript, and J. Westmoreland for the illustration. A.K. was supported by the European Molecular Biology Organization (EMBO, ALTF 1171-2013) and Human Frontier Science Program (LT000888/2014-L). A.P.P. and A.B. are supported by the Medical Research Council (MC_U105185860).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Bertolotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Krzyzosiak, A., Pitera, A.P., Bertolotti, A. (2022). An Overview of Methods for Detecting eIF2α Phosphorylation and the Integrated Stress Response. In: Matějů, D., Chao, J.A. (eds) The Integrated Stress Response. Methods in Molecular Biology, vol 2428. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1975-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1975-9_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1974-2

  • Online ISBN: 978-1-0716-1975-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics