Skip to main content

Isolation of Normal and Cancer-Associated Fibroblasts

  • Protocol
  • First Online:
Ovarian Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2424))

Abstract

Cancer-associated fibroblasts (CAFs) play important roles in regulating tumor progression, metastasis, and response to therapies. Accurately modeling the interplay between cancer cells and the tumor microenvironment (TME) requires the use of primary cells from patient samples. Here we describe methods for the isolation of both primary CAFs and fibroblasts from omental tissue using a combination of mechanical dissociation and enzymatic digestion. Primary cells can be used for functional and mechanistic studies and may be safely cryopreserved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Curtis M, Kenny HA, Ashcroft B, Mukherjee A, Johnson A, Zhang Y, Helou Y, Batlle R, Liu X, Gutierrez N, Gao X, Yamada SD, Lastra R, Montag A, Ahsan N, Locasale JW, Salomon AR, Nebreda AR, Lengyel E (2019) Fibroblasts mobilize tumor cell glycogen to promote proliferation and metastasis. Cell Metab 29:141–155.e9. https://doi.org/10.1016/j.cmet.2018.08.007

    Article  CAS  PubMed  Google Scholar 

  2. Dasari S, Fang Y, Mitra AK (2018) Cancer associated fibroblasts: naughty neighbors that drive ovarian cancer progression. Cancers 10(11):406. https://doi.org/10.3390/cancers10110406

    Article  CAS  PubMed Central  Google Scholar 

  3. Eckert MA, Coscia F, Chryplewicz A, Chang JW, Hernandez KM, Pan S, Tienda SM, Nahotko DA, Li G, Blazenovic I, Lastra RR, Curtis M, Yamada SD, Perets R, McGregor SM, Andrade J, Fiehn O, Moellering RE, Mann M, Lengyel E (2019) Proteomics reveals NNMT as a master metabolic regulator of cancer-associated fibroblasts. Nature 569:723–728. https://doi.org/10.1038/s41586-019-1173-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wu RC, Wang P, Lin SF, Zhang M, Song Q, Chu T, Wang BG, Kurman RJ, Vang R, Kinzler K, Tomasetti C, Jiao Y, Shih IM, Wang TL (2019) Genomic landscape and evolutionary trajectories of ovarian cancer precursor lesions. J Pathol 248:41–50. https://doi.org/10.1002/path.5219

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chen X, Song E (2019) Turning foes to friends: targeting cancer-associated fibroblasts. Nat Rev Drug Discov 18:99–115. https://doi.org/10.1038/s41573-018-0004-1

    Article  CAS  PubMed  Google Scholar 

  6. Alkasalias T, Moyano-Galceran L, Arsenian-Henriksson M, Lehti K (2018) Fibroblasts in the tumor microenvironment: shield or spear? Int J Mol Sci 19(5):1532. https://doi.org/10.3390/ijms19051532

    Article  CAS  PubMed Central  Google Scholar 

  7. Wang L, Zhang F, Cui JY, Chen L, Chen YT, Liu BW (2018) CAFs enhance paclitaxel resistance by inducing EMT through the IL6/JAK2/STAT3 pathway. Oncol Rep 39:2081–2090. https://doi.org/10.3892/or.2018.6311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhao L, Ji G, Le X, Luo Z, Wang C, Feng M, Xu L, Zhang Y, Lau WB, Lau B, Yang Y, Lei L, Yang H, Xuan Y, Chen Y, Deng X, Yi T, Yao S, Zhao X, Wei Y, Zhou S (2017) An integrated analysis identifies STAT4 as a key regulator of ovarian cancer metastasis. Oncogene 36:3384–3396. https://doi.org/10.1038/onc.2016.487

    Article  CAS  PubMed  Google Scholar 

  9. Mitra AK, Zillhardt M, Hua Y, Tiwari P, Murmann AE, Peter ME, Lengyel E (2012) MicroRNAs reprogram normal fibroblasts into cancer-associated fibroblasts in ovarian cancer. Cancer Discov 2:1100–1108. https://doi.org/10.1158/2159-8290.CD-12-0206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pang W, Su J, Wang Y, Feng H, Dai X, Yuan Y, Chen X, Yao W (2015) Pancreatic cancer-secreted miR-155 implicates in the conversion from normal fibroblasts to cancer-associated fibroblasts. Cancer Sci 106:1362–1369. https://doi.org/10.1111/cas.12747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kalluri R (2016) The biology and function of fibroblasts in cancer. Nat Rev Cancer 16:582–598. https://doi.org/10.1038/nrc.2016.73

    Article  CAS  PubMed  Google Scholar 

  12. Huang H, Brekken RA (2020) Recent advances in understanding cancer-associated fibroblasts in pancreatic cancer. Am J Physiol Cell Physiol 319:C233–C243. https://doi.org/10.1152/ajpcell.00079.2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, Fearon D, Greten FR, Hingorani SR, Hunter T, Hynes RO, Jain RK, Janowitz T, Jorgensen C, Kimmelman AC, Kolonin MG, Maki RG, Powers RS, Pure E, Ramirez DC, Scherz-Shouval R, Sherman MH, Stewart S, Tlsty TD, Tuveson DA, Watt FM, Weaver V, Weeraratna AT, Werb Z (2020) A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer 20:174–186. https://doi.org/10.1038/s41568-019-0238-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Franco OE, Shaw AK, Strand DW, Hayward SW (2010) Cancer associated fibroblasts in cancer pathogenesis. Semin Cell Dev Biol 21:33–39. https://doi.org/10.1016/j.semcdb.2009.10.010

    Article  CAS  PubMed  Google Scholar 

  15. Ireland LV, Mielgo A (2018) Macrophages and fibroblasts, key players in cancer chemoresistance. Front Cell Dev Biol 6:131. https://doi.org/10.3389/fcell.2018.00131

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kenny HA, Krausz T, Yamada SD, Lengyel E (2007) Use of a novel 3D culture model to elucidate the role of mesothelial cells, fibroblasts and extra-cellular matrices on adhesion and invasion of ovarian cancer cells to the omentum. Int J Cancer 121:1463–1472. https://doi.org/10.1002/ijc.22874

    Article  CAS  PubMed  Google Scholar 

  17. Shan T, Chen S, Chen X, Lin WR, Li W, Ma J, Wu T, Cui X, Ji H, Li Y, Kang Y (2017) Cancer-associated fibroblasts enhance pancreatic cancer cell invasion by remodeling the metabolic conversion mechanism. Oncol Rep 37:1971–1979. https://doi.org/10.3892/or.2017.5479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Horie M, Saito A, Yamaguchi Y, Ohshima M, Nagase T (2015) Three-dimensional co-culture model for tumor-stromal interaction. J Vis Exp 15(5):353–364. https://doi.org/10.3791/52469

    Article  Google Scholar 

  19. Langhans SA (2018) Three-dimensional in vitro cell culture models in drug discovery and drug repositioning. Front Pharmacol 9:6. https://doi.org/10.3389/fphar.2018.00006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chitty JL, Skhinas JN, Filipe EC, Wang S, Cupello CR, Grant RD, Yam M, Papanicolaou M, Major G, Zaratzian A, Da Silva AM, Tayao M, Vennin C, Timpson P, Madsen CD, Cox TR (2020) The mini-organo: a rapid high-throughput 3D coculture organotypic assay for oncology screening and drug development. Cancer Rep 3:e1209. https://doi.org/10.1002/cnr2.1209

    Article  CAS  Google Scholar 

  21. Kenny HA, Lal-Nag M, Shen M, Kara B, Nahotko DA, Wroblewski K, Fazal S, Chen S, Chiang CY, Chen YJ, Brimacombe KR, Marugan J, Ferrer M, Lengyel E (2020) Quantitative high-throughput screening using an organotypic model identifies compounds that inhibit ovarian cancer metastasis. Mol Cancer Ther 19:52–62. https://doi.org/10.1158/1535-7163.MCT-19-0052

    Article  CAS  PubMed  Google Scholar 

  22. Truskey GA (2010) Endothelial cell vascular smooth muscle cell co-culture assay for high throughput screening assays for discovery of anti-angiogenesis agents and other therapeutic molecules. Int J High Throughput Screen 2010:171–181. https://doi.org/10.2147/IJHTS.S13459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sharon Y, Alon L, Glanz S, Servais C, Erez N (2013) Isolation of normal and cancer-associated fibroblasts from fresh tissues by Fluorescence Activated Cell Sorting (FACS). J Vis Exp:e4425. https://doi.org/10.3791/4425

  24. Castello-Cros R, Cukierman E (2009) Stromagenesis during tumorigenesis: characterization of tumor-associated fibroblasts and stroma-derived 3D matrices. Methods Mol Biol 522:275–305. https://doi.org/10.1007/978-1-59745-413-1_19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Proia DA, Kuperwasser C (2006) Reconstruction of human mammary tissues in a mouse model. Nat Protoc 1:206–214. https://doi.org/10.1038/nprot.2006.31

    Article  CAS  PubMed  Google Scholar 

  26. Costa A, Kieffer Y, Scholer-Dahirel A, Pelon F, Bourachot B, Cardon M, Sirven P, Magagna I, Fuhrmann L, Bernard C, Bonneau C, Kondratova M, Kuperstein I, Zinovyev A, Givel AM, Parrini MC, Soumelis V, Vincent-Salomon A, Mechta-Grigoriou F (2018) Fibroblast heterogeneity and immunosuppressive environment in human breast cancer. Cancer Cell 33:463–479.e10. https://doi.org/10.1016/j.ccell.2018.01.011

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank all of the members of the Lengyel Ovarian Cancer Research Laboratory at the University of Chicago for their helpful comments and feedback. In particular, we thank Dr. Abir Mukherjee for his assistance. M.A.E. was supported by the Ovarian Cancer Research Alliance (OCRA) Liz Tilberis Early Career Award 650339.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Eckert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zawieracz, K., Eckert, M.A. (2022). Isolation of Normal and Cancer-Associated Fibroblasts. In: Kreeger, P.K. (eds) Ovarian Cancer. Methods in Molecular Biology, vol 2424. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1956-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1956-8_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1955-1

  • Online ISBN: 978-1-0716-1956-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics