Skip to main content

Simulations of Lipid Monolayers

  • Protocol
  • First Online:
Biomolecular Simulations

Part of the book series: Methods in Molecular Biology ((MIMB,volume 924))

Abstract

A lipid monolayer lining a boundary between two immiscible phases forms a complex interface with inhomogeneous distribution of forces. Unlike lipid bilayers, monolayers are formed in asymmetric environment and their properties depend strongly on lipid surface density. The monolayer properties are also affected significantly by the representation of the pure interface. Here we give a brief theoretical introduction and describe methods to simulate lipid monolayers starting from force-fields and system setup to reproducing state points on the surface tension (pressure)–area isotherms and transformations between them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tanford C (1980) The hydrophobic effect. Wiley, New York, NY

    Google Scholar 

  2. Rosen MJ (2004) Surfactants and interfacial phenomena, 3rd edn. Wiley, Hoboken, NJ

    Book  Google Scholar 

  3. Mouritsen OG (2005) Life—as a matter of fat. The frontiers collection. Springer, Heidelberg

    Google Scholar 

  4. McConnell HM (1991) Structures and transitions in lipid monolayers at the air–water-interface. Annu Rev Phys Chem 42:171–195

    Article  CAS  Google Scholar 

  5. Knobler CM, Desai RC (1992) Phase-transitions in monolayers. Annu Rev Phys Chem 43:207–236

    Article  CAS  Google Scholar 

  6. Mohwald H (1990) Phospholipid and phospholipid-protein monolayers at the air/water interface. Annu Rev Phys Chem 41:441–476

    Article  PubMed  CAS  Google Scholar 

  7. Knobler CM (1990) Seeing phenomena in flatland—studies of monolayers by fluorescence microscopy. Science 249(4971):870–874

    Article  PubMed  CAS  Google Scholar 

  8. Weis RM (1991) Fluorescence microscopy of phospholipid monolayer phase-transitions. Chem Phys Lipids 57(2–3):227–239

    Article  PubMed  CAS  Google Scholar 

  9. Meunier J (2000) Why a Brewster angle microscope? Colloids Surf A: Physicochem Eng Aspects 171(1–3):33–40

    Article  CAS  Google Scholar 

  10. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56(9):930–933

    Article  PubMed  Google Scholar 

  11. Schief WR, Dennis SR, Frey W, Vogel V (2000) Light scattering microscopy from monolayers and nanoparticles at the air/water interface. Colloids Surf A: Physicochem Eng Aspects 171(1–3):75–86

    Article  CAS  Google Scholar 

  12. Ahlstrom P, Berendsen HJC (1993) A molecular-dynamics study of lecithin monolayers. J Phys Chem 97(51):13691–13702

    Article  CAS  Google Scholar 

  13. Baoukina S, Marrink SJ, Tieleman DP (2009) Structure and dynamics of lipid monolayers: theory and applications. Biomembr Front: Nanostruct Models Des Life 2:75–99

    Google Scholar 

  14. McKinnon SJ, Whittenburg SL, Brooks B (1992) Nonequilibrium molecular-dynamics simulation of oxygen diffusion through hexadecane monolayers with varying concentrations of cholesterol. J Phys Chem 96(25):10497–10506

    Article  CAS  Google Scholar 

  15. Zhang YH, Feller SE, Brooks BR, Pastor RW (1995) Computer-simulation of liquid/liquid interfaces. 1. Theory and application to octane/water. J Chem Phys 103(23):10252–10266

    Article  CAS  Google Scholar 

  16. Feller SE, Zhang YH, Pastor RW (1995) Computer-simulation of liquid/liquid interfaces. 2. Surface-tension area dependence of a bilayer and monolayer. J Chem Phys 103(23):10267–10276

    Article  CAS  Google Scholar 

  17. Kaznessis YN, Kim ST, Larson RG (2002) Simulations of zwitterionic and anionic phospholipid monolayers. Biophys J 82(4):1731–1742

    Article  PubMed  CAS  Google Scholar 

  18. Pohorille A, Benjamin I (1993) Structure and energetics of model amphiphilic molecules at the water liquid vapor interface—a molecular-dynamics study. J Phys Chem 97(11):2664–2670

    Article  PubMed  CAS  Google Scholar 

  19. Kaganer VM, Mohwald H, Dutta P (1999) Structure and phase transitions in Langmuir monolayers. Rev Mod Phys 71(3):779–819

    Article  CAS  Google Scholar 

  20. Albrecht O, Gruler H, Sackmann E (1978) Polymorphism of phospholipid monolayers. J Phys 39(3):301–313

    Article  CAS  Google Scholar 

  21. Ben-Shaul A (1995) The structure and dynamics of membranes. Elsevier, Amsterdam

    Google Scholar 

  22. Israelachvili JN (1985) Intermolecular and surface forces. Academic, London

    Google Scholar 

  23. Marsh D (1996) Lateral pressure in membranes. Biochim Biophys Acta 1286(3):183–223

    Article  PubMed  CAS  Google Scholar 

  24. Baoukina S, Marrink SJ, Tieleman DP (2010) Lateral pressure profiles in lipid monolayers. Faraday Discuss 144:393–409

    Article  PubMed  CAS  Google Scholar 

  25. Aveyard R, Haydon DA (1973) An introduction to the principles of surface chemistry. Cambridge University, New York, NY

    Google Scholar 

  26. Hermans J, Berendsen HJC, Vangunsteren WF, Postma JPM (1984) A consistent empirical potential for water–protein interactions. Biopolymers 23(8):1513–1518

    Article  CAS  Google Scholar 

  27. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935

    Article  CAS  Google Scholar 

  28. Yesylevskyy SO, Schafer LV, Sengupta D, Marrink SJ (2010) Polarizable water model for the coarse-grained MARTINI force field. PLoS Comput Biol 6(6)

    Google Scholar 

  29. Abascal JLF, Vega C (2005) A general purpose model for the condensed phases of water: TIP4P/2005. J Chem Phys 123(23)

    Google Scholar 

  30. Wu Z, Cui QA, Yethiraj A (2010) A new coarse-grained model for water: the importance of electrostatic interactions. J Phys Chem B 114(32):10524–10529

    Article  PubMed  CAS  Google Scholar 

  31. Shinoda W, DeVane R, Klein ML (2008) Coarse-grained molecular modeling of non-ionic surfactant self-assembly. Soft Matter 4(12):2454–2462

    Article  CAS  Google Scholar 

  32. Mohammad-Aghaie D, Mace E, Sennoga CA, Seddon JM, Bresme F (2010) Molecular dynamics simulations of liquid condensed to liquid expanded transitions in DPPC monolayers. J Phys Chem B 114(3):1325–1335

    Article  PubMed  CAS  Google Scholar 

  33. MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102(18):3586–3616

    Article  CAS  Google Scholar 

  34. Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The Amber biomolecular simulation programs. J Comput Chem 26(16):1668–1688

    Article  PubMed  CAS  Google Scholar 

  35. van Gunsteren WF (1987) GROMOS. University of Groningen, Groningen

    Google Scholar 

  36. Shushkov PG, Tzvetanov SA, Ivanova AN, Tadjer AV (2008) Dielectric properties tangential to the interface in model insoluble monolayers: theoretical assessment. Langmuir 24(9):4615–4624

    Article  PubMed  CAS  Google Scholar 

  37. Veldhuizen R, Nag K, Orgeig S, Possmayer F (1998) The role of lipids in pulmonary surfactant. Biochim Biophys Acta: Mol Basis Dis 1408(2–3):90–108

    Article  CAS  Google Scholar 

  38. Baoukina S, Monticelli L, Marrink SJ, Tieleman DP (2007) Pressure-area isotherm of a lipid monolayer from molecular dynamics simulations. Langmuir 23(25):12617–12623

    Article  PubMed  CAS  Google Scholar 

  39. Duncan SL, Larson RG (2008) Comparing experimental and simulated pressure-area isotherms for DPPC. Biophys J. doi:doi:10.1529/biophysj.107.114215

  40. Knecht V, Marrink SJ (2007) Molecular dynamics simulations of lipid vesicle fusion in atomic detail. Biophys J 92(12):4254–4261

    Article  PubMed  CAS  Google Scholar 

  41. Adhangale PS, Gaver DP (2006) Equation of state for a coarse-grained DPPC monolayer at the air/water interface. Mol Phys 104(19):3011–3019

    Article  CAS  Google Scholar 

  42. Kandasamy SK, Larson RG (2005) Molecular dynamics study of the lung surfactant peptide SP-B1-25 with DPPC monolayers: insights into interactions and peptide position and orientation. Biophys J 88(3):1577–1592

    Article  PubMed  CAS  Google Scholar 

  43. Shinoda W, DeVane R, Klein ML (2010) Zwitterionic lipid assemblies: molecular dynamics studies of monolayers, bilayers, and vesicles using a new coarse grain force field. J Phys Chem B 114(20):6836–6849

    Article  PubMed  CAS  Google Scholar 

  44. Dominguez H, Smondyrev AM, Berkowitz ML (1999) Computer simulations of phosphatidylcholine monolayers at air/water and CCl4/water interfaces. J Phys Chem B 103(44):9582–9588

    Article  CAS  Google Scholar 

  45. Schneemilch M, Quirke N (2010) Molecular dynamics of nanoparticle translocation at lipid interfaces. Mol Simul 36(11):831–835

    Article  CAS  Google Scholar 

  46. Choe S, Chang R, Jeon J, Violi A (2008) Molecular dynamics simulation study of a pulmonary surfactant film interacting with a carbonaceous nanoparticle. Biophys J 95(9):4102–4114

    Article  PubMed  CAS  Google Scholar 

  47. Kaznessis YN, Kim S, Larson RG (2002) Specific mode of interaction between components of model pulmonary surfactants using computer simulations. J Mol Biol 322(3):569–582

    Article  PubMed  CAS  Google Scholar 

  48. Baoukina S, Monticelli L, Risselada HJ, Marrink SJ, Tieleman DP (2008) The molecular mechanism of lipid monolayer collapse. Proc Natl Acad Sci U S A 105(31):10803–10808

    Article  PubMed  CAS  Google Scholar 

  49. Duncan SL, Larson RG (2010) Folding of lipid monolayers containing lung surfactant proteins SP-B1-25 and SP-C studied via coarse-grained molecular dynamics simulations. Biochim Biophys Acta Biomembr 1798(9):1632–1650

    Article  CAS  Google Scholar 

  50. Javanainen M, Monticelli L, de la Serna JB, Vattulainen I (2010) Free volume theory applied to lateral diffusion in Langmuir monolayers: atomistic simulations for a protein-free model of lung surfactant. Langmuir 26(19):15436–15444

    Article  PubMed  CAS  Google Scholar 

  51. Rose D, Rendell J, Lee D, Nag K, Booth V (2008) Molecular dynamics simulations of lung surfactant lipid monolayers. Biophys Chem 138(3):67–77

    Article  PubMed  CAS  Google Scholar 

  52. Kulovesi P, Telenius J, Koivuniemi A, Brezesinski G, Rantamaki A, Viitala T, Puukilainen E, Ritala M, Wiedmer SK, Vattulainen I, Holopainen JM (2010) Molecular organization of the tear fluid lipid layer. Biophys J 99(8):2559–2567

    Article  PubMed  CAS  Google Scholar 

  53. Laing C, Baoukina S, Tieleman DP (2009) Molecular dynamics study of the effect of cholesterol on the properties of lipid monolayers at low surface tensions. Phys Chem Chem Phys 11:1916–1922

    Article  PubMed  CAS  Google Scholar 

  54. Berger O, Edholm O, Jahnig F (1997) Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophys J 72(5):2002–2013

    Article  PubMed  CAS  Google Scholar 

  55. Jorgensen WL, Tiradorives J (1988) The Opls potential functions for proteins—energy minimizations for crystals of cyclic-peptides and crambin. J Am Chem Soc 110(6):1657–1666

    Article  CAS  Google Scholar 

  56. Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, Vries AH (2007) The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B 111(27):7812–7824

    Article  PubMed  CAS  Google Scholar 

  57. Lopez CF, Nielsen SO, Moore PB, Shelley JC, Klein ML (2002) Self-assembly of a phospholipid Langmuir monolayer using coarse-grained molecular dynamics simulations. J Phys Condens Matter 14(40):9431–9444

    Article  CAS  Google Scholar 

  58. Chanda J, Bandyopadhyay S (2006) Molecular dynamics study of surfactant monolayers adsorbed at the oil/water and air/water interfaces. J Phys Chem B 110(46):23482–23488

    Article  PubMed  CAS  Google Scholar 

  59. Gupta A, Chauhan A, Kopelevichc DI (2008) Molecular modeling of surfactant covered oil–water interfaces: dynamics, microstructure, and barrier for mass transport. J Chem Phys 128(23)

    Google Scholar 

  60. Nielsen SO, Lopez CF, Moore PB, Shelley JC, Klein ML (2003) Molecular dynamics investigations of lipid Langmuir monolayers using a coarse-grain model. J Phys Chem B 107(50):13911–13917

    Article  CAS  Google Scholar 

  61. Knecht V, Muller M, Bonn M, Marrink SJ, Mark AE (2005) Simulation studies of pore and domain formation in a phospholipid monolayer. J Chem Phys 122(2):024704

    Article  PubMed  Google Scholar 

  62. Xing CY, Faller R (2009) Coarse-grained simulations of supported and unsupported lipid monolayers. Soft Matter 5(22):4526–4530

    Article  CAS  Google Scholar 

  63. Nielsen SO, Srinivas G, Klein ML (2005) Incorporating a hydrophobic solid into a coarse grain liquid framework: graphite in an aqueous amphiphilic environment. J Chem Phys 123(12)

    Google Scholar 

  64. Yeh IC, Berkowitz ML (1999) Ewald summation for systems with slab geometry. J Chem Phys 111(7):3155–3162

    Article  CAS  Google Scholar 

  65. Lague P, Pastor RW, Brooks BR (2004) Pressure-based long-range correction for Lennard-Jones interactions in molecular dynamics simulations: application to alkanes and interfaces. J Phys Chem B 108(1):363–368

    Article  Google Scholar 

  66. den Otter WK, Shkulipa SA (2007) Intermonolayer friction and surface shear viscosity of lipid bilayer membranes. Biophys J 93(2):423–433

    Article  Google Scholar 

  67. Baoukina S, Monticelli L, Amrein M, Tieleman DP (2007) The molecular mechanism of monolayer-bilayer transformations of lung surfactant from molecular dynamics simulations. Biophys J 93(11):3775–3782

    Article  PubMed  CAS  Google Scholar 

  68. Lu WX, Knobler CM, Bruinsma RF, Twardos M, Dennin M (2002) Folding Langmuir monolayers. Phys Rev Lett 89(14):146107

    Article  PubMed  Google Scholar 

  69. Pocivavsek L, Dellsy R, Kern A, Johnson S, Lin BH, Lee KYC, Cerda E (2008) Stress and fold localization in thin elastic membranes. Science 320(5878):912–916

    Article  PubMed  CAS  Google Scholar 

  70. Lorenz CD, Travesset A (2006) Atomistic simulations of Langmuir monolayer collapse. Langmuir 22(24):10016–10024

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

SB is supported by postdoctoral fellowship from the Alberta Heritage Foundation for Medical Research (AHFMR). DPT is an Alberta Ingenuity Health Solutions Scientist and Alberta Ingenuity Technology Futures Strategic Chair in (Bio)Molecular Simulation. This work was supported by the Natural Sciences and Engineering Research Council (Canada).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana Baoukina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Baoukina, S., Tieleman, D.P. (2013). Simulations of Lipid Monolayers. In: Monticelli, L., Salonen, E. (eds) Biomolecular Simulations. Methods in Molecular Biology, vol 924. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-017-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-017-5_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-016-8

  • Online ISBN: 978-1-62703-017-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics