Skip to main content

CRISPR-Cas9 Editing of the Synthesis of Biodegradable Polyesters Polyhydroxyalkanaotes (PHA) in Pseudomonas putida KT2440

  • Protocol
  • First Online:
Enzyme Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2397))

Abstract

Genome editing technologies allow us to study the metabolic pathways of cells and the contribution of each associated enzyme to various processes, including polyhydroxyalkanoate (PHA) synthesis. These biodegradable polyesters accumulated by a range of bacteria are thermoplastic, elastomeric, and biodegradable, thus have great applicative potential. However, several challenges are associated with PHA production, mainly the cost and shortcomings in their physical properties. The advances in synthetic biology and metabolic engineering provide us with a tool to improve the production process and allow the synthesis of tailor-made PHAs. CRISPR/Cas9 technology represents a new generation of genome editing tools capable of application in nearly all organisms. However, off-target activity is a crucial issue for CRISPR/Cas9 technology, as it can cause genomic instability and disruption of functions of otherwise normal genes. Here, we provide a detailed protocol for scarless deletion of the genes implicated in PHA metabolism of Pseudomonas putida KT2440 using modified CRISPR/Cas9 systems and methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lemoigne M (1925) Etudes sur l’autolyse microbienne acidification par formation d’acide β-oxybutyrique. Ann Inst Pasteur 39:144–173

    Google Scholar 

  2. Jendrossek D (2007) Peculiarities of PHA granules preparation and PHA depolymerase activity determination. Appl Microbiol Biotechnol 74(6):1186–1196

    Article  CAS  PubMed  Google Scholar 

  3. Braunegg G, Genser K, Bona R et al Production of PHAs from agricultural waste material. In: Macromolecular symposia, 1999, vol 1. Wiley Online Library, pp 375–383

    Google Scholar 

  4. Ojumu T, Yu J, Solomon B (2004) Production of polyhydroxyalkanoates, a bacterial biodegradable polymers. Afr J Biotechnol 3(1):18–24

    Article  CAS  Google Scholar 

  5. Rehm BH (2003) Polyester synthases: natural catalysts for plastics. Biochem J 376(1):15–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kootstra M, Elissen H, Huurman S (2017) PHA’s (polyhydroxyalkanoates): general information on structure and raw materials for their production. A running document for “Kleinschalige Bioraffinage WP9: PHA”. Task 5. Wageningen Plant Research report 727. Wageningen UR, PPO/Acrres

    Google Scholar 

  7. Ishii-Hyakutake M, Mizuno S, Tsuge T (2018) Biosynthesis and characteristics of aromatic polyhydroxyalkanoates. Polymers 10(11):1267

    Article  PubMed Central  Google Scholar 

  8. Ong SY, Zainab LI, Pyary S et al (2018) A novel biological recovery approach for PHA employing selective digestion of bacterial biomass in animals. Appl Microbiol Biotechnol 102(5):2117–2127

    Article  CAS  PubMed  Google Scholar 

  9. Barnard GN, Sanders J (1989) The poly-beta-hydroxybutyrate granule in vivo. A new insight based on NMR spectroscopy of whole cells. J Biol Chem 264(6):3286–3291

    Article  CAS  PubMed  Google Scholar 

  10. Amache R, Sukan A, Safari M et al (2013) Advances in PHAs production. Chem Eng Trans 32:931–936

    Google Scholar 

  11. Leong YK, Show PL, Ooi CW et al (2014) Current trends in polyhydroxyalkanoates (PHAs) biosynthesis: insights from the recombinant Escherichia coli. J Biotechnol 180:52–65

    Article  CAS  PubMed  Google Scholar 

  12. Wang YJ, Hua FL, Tsang YF et al (2007) Synthesis of PHAs from waster under various C:N ratios. Bioresour Technol 98(8):1690–1693

    Article  CAS  PubMed  Google Scholar 

  13. Muhammadi S, Afzal M et al (2015) Bacterial polyhydroxyalkanoates-eco-friendly next generation plastic: production, biocompatibility, biodegradation, physical properties and applications. Green Chem Lett Rev 8(3–4):56–77

    Article  Google Scholar 

  14. Foster LJ (2007) Biosynthesis, properties and potential of natural-synthetic hybrids of polyhydroxyalkanoates and polyethylene glycols. Appl Microbiol Biotechnol 75(6):1241–1247

    Article  CAS  PubMed  Google Scholar 

  15. Kim DY, Kim HW, Chung MG et al (2007) Biosynthesis, modification, and biodegradation of bacterial medium-chain-length polyhydroxyalkanoates. J Microbiol 45(2):87–97

    PubMed  Google Scholar 

  16. Blank LM, Narancic T, Mampel J et al (2020) Biotechnological upcycling of plastic waste and other non-conventional feedstocks in a circular economy. Curr Opin Biotechnol 62:212–219

    Article  CAS  PubMed  Google Scholar 

  17. Kenny ST, Runic JN, Kaminsky W et al (2008) Up-cycling of PET (polyethylene terephthalate) to the biodegradable plastic PHA (polyhydroxyalkanoate). Environ Sci Technol 42(20):7696–7701

    Article  CAS  PubMed  Google Scholar 

  18. Guzik MW, Kenny ST, Duane GF et al (2014) Conversion of post consumer polyethylene to the biodegradable polymer polyhydroxyalkanoate. Appl Microbiol Biotechnol 98(9):4223–4232

    Article  CAS  PubMed  Google Scholar 

  19. Ward PG, Goff M, Donner M et al (2006) A two step chemo-biotechnological conversion of polystyrene to a biodegradable thermoplastic. Environ Sci Technol 40(7):2433–2437

    Article  CAS  PubMed  Google Scholar 

  20. Ruiz C, Kenny ST, Babu PR et al (2019) High cell density conversion of hydrolysed waste cooking oil fatty acids into medium chain length polyhydroxyalkanoate using Pseudomonas putida KT2440. Catalysts 9(5)

    Google Scholar 

  21. Ruiz C, Kenny ST, Narancic T et al (2019) Conversion of waste cooking oil into medium chain polyhydroxyalkanoates in a high cell density fermentation. J Biotechnol 306:9–15

    Article  CAS  PubMed  Google Scholar 

  22. Amelia TSM, Govindasamy S, Tamothran AM et al (2019) Applications of PHA in agriculture. In: Biotechnological applications of polyhydroxyalkanoates. Springer, pp 347–361

    Chapter  Google Scholar 

  23. Luckachan GE, Pillai C (2011) Biodegradable polymers—a review on recent trends and emerging perspectives. J Polym Environ 19(3):637–676

    Article  CAS  Google Scholar 

  24. Tan G-YA, Chen C-L, Li L et al (2014) Start a research on biopolymer polyhydroxyalkanoate (PHA): a review. Polymers 6(3):706–754

    Article  Google Scholar 

  25. Manavitehrani I, Fathi A, Badr H et al (2016) Biomedical applications of biodegradable polyesters. Polymers 8(1):20

    Article  PubMed Central  Google Scholar 

  26. Gao X, Chen J-C, Wu Q et al (2011) Polyhydroxyalkanoates as a source of chemicals, polymers, and biofuels. Curr Opin Biotechnol 22(6):768–774

    Article  CAS  PubMed  Google Scholar 

  27. de Roo G, Kellerhals MB, Ren Q et al (2002) Production of chiral R-3-hydroxyalkanoic acids and R-3-hydroxyalkanoic acid methylesters via hydrolytic degradation of polyhydroxyalkanoate synthesized by pseudomonads. Biotechnol Bioeng 77(6):717–722

    Article  PubMed  Google Scholar 

  28. Chen G-Q, Wu Q (2005) Microbial production and applications of chiral hydroxyalkanoates. Appl Microbiol Biotechnol 67(5):592–599

    Article  CAS  PubMed  Google Scholar 

  29. De Roo G (2002) Physiological basis of polyhydroxyalkanoate metabolism in Pseudomonas putida. ETH Zurich

    Google Scholar 

  30. Ward PG (2004) Polyhydroxyalkanoate accumulation by Pseudomonas putida CA-3. University College Dublin

    Google Scholar 

  31. Prieto A, Escapa IF, Martínez V et al (2016) A holistic view of polyhydroxyalkanoate metabolism in Pseudomonas putida. Environ Microbiol 18(2):341–357

    Article  CAS  PubMed  Google Scholar 

  32. Rehm BH, Kruger N, Steinbuchel A (1998) A new metabolic link between fatty acid de novo synthesis and polyhydroxyalkanoic acid synthesis. The PHAG gene from Pseudomonas putida KT2440 encodes a 3-hydroxyacyl-acyl carrier protein-coenzyme a transferase. J Biol Chem 273(37):24044–24051

    Article  CAS  PubMed  Google Scholar 

  33. Witholt B, Kessler B (1999) Perspectives of medium chain length poly (hydroxyalkanoates), a versatile set of bacterial bioplastics. Curr Opin Biotechnol 10(3):279–285

    Article  CAS  PubMed  Google Scholar 

  34. Tsuge T, Fukui T, Matsusaki H et al (2000) Molecular cloning of two (R)-specific enoyl-CoA hydratase genes from Pseudomonas aeruginosa and their use for polyhydroxyalkanoate synthesis. FEMS Microbiol Lett 184(2):193–198

    Article  CAS  PubMed  Google Scholar 

  35. Tsuge T, Taguchi K, Doi Y (2003) Molecular characterization and properties of (R)-specific enoyl-CoA hydratases from Pseudomonas aeruginosa: metabolic tools for synthesis of polyhydroxyalkanoates via fatty acid ß-oxidation. Int J Biol Macromol 31(4–5):195–205

    Article  CAS  PubMed  Google Scholar 

  36. Davis R, Chandrashekar A, Shamala TR (2008) Role of (R)-specific enoyl coenzyme A hydratases of Pseudomonas sp in the production of polyhydroxyalkanoates. Antonie Van Leeuwenhoek 93(3):285–296

    Article  CAS  PubMed  Google Scholar 

  37. Chung MG, Rhee YH (2012) Overexpression of the (R)-specific enoyl-CoA hydratase gene from Pseudomonas chlororaphis HS21 in Pseudomonas strains for the biosynthesis of polyhydroxyalkanoates of altered monomer composition. Biosci Biotechnol Biochem 76(3):613–616

    Article  CAS  PubMed  Google Scholar 

  38. Fiedler S, Steinbuchel A, Rehm BH (2002) The role of the fatty acid beta-oxidation multienzyme complex from Pseudomonas oleovorans in polyhydroxyalkanoate biosynthesis: molecular characterization of the fadBA operon from P. oleovorans and of the enoyl-CoA hydratase genes phaJ from P. oleovorans and Pseudomonas putida. Arch Microbiol 178(2):149–160

    Article  CAS  PubMed  Google Scholar 

  39. Sato S, Kanazawa H, Tsuge T (2011) Expression and characterization of (R)-specific enoyl coenzyme A hydratases making a channeling route to polyhydroxyalkanoate biosynthesis in Pseudomonas putida. Appl Microbiol Biotechnol 90(3):951–959

    Article  CAS  PubMed  Google Scholar 

  40. Ren Q, Sierro N, Witholt B et al (2000) FabG, an NADPH-dependent 3-ketoacyl reductase of Pseudomonas aeruginosa, provides precursors for medium-chain-length poly-3-hydroxyalkanoate biosynthesis in Escherichia coli. J Bacteriol 182(10):2978–2981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Steinbüchel A, Lütke-Eversloh T (2003) Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochem Eng J 16(2):81–96

    Article  Google Scholar 

  42. Le Meur S, Zinn M, Egli T et al (2012) Production of medium-chain-length polyhydroxyalkanoates by sequential feeding of xylose and octanoic acid in engineered Pseudomonas putida KT2440. BMC Biotechnol 12:53

    Article  PubMed  PubMed Central  Google Scholar 

  43. Nelson KE, Weinel C, Paulsen IT et al (2002) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4(12):799–808

    Article  CAS  PubMed  Google Scholar 

  44. Hori K, Marsudi S, Unno H (2002) Simultaneous production of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa. Biotechnol Bioeng 78(6):699–707

    Article  CAS  PubMed  Google Scholar 

  45. Madison LL, Huisman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63(1):21–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Song G, Jia M, Chen K et al (2016) CRISPR/Cas9: a powerful tool for crop genome editing. Crop J 4(2):75–82

    Article  Google Scholar 

  47. Cook TB, Rand JM, Nurani W et al (2018) Genetic tools for reliable gene expression and recombineering in Pseudomonas putida. J Ind Microbiol Biotechnol 45(7):517–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liang X, Potter J, Kumar S et al (2015) Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J Biotechnol 208:44–53

    Article  CAS  PubMed  Google Scholar 

  49. Wang H, La Russa M, Qi LS (2016) CRISPR/Cas9 in genome editing and beyond. Annu Rev Biochem 85:227–264

    Article  CAS  PubMed  Google Scholar 

  50. Wu D, Guan X, Zhu Y et al (2017) Structural basis of stringent PAM recognition by CRISPR-C2c1 in complex with sgRNA. Cell Res 27(5):705–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shah SA, Erdmann S, Mojica FJ et al (2013) Protospacer recognition motifs: mixed identities and functional diversity. RNA Biol 10(5):891–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kleinstiver BP, Prew MS, Tsai SQ et al (2015) Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nat Biotechnol 33(12):1293–1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Martínez-García E, de Lorenzo V (2011) Engineering multiple genomic deletions in Gram-negative bacteria: analysis of the multi-resistant antibiotic profile of Pseudomonas putida KT2440. Environ Microbiol 13(10):2702–2716

    Article  PubMed  Google Scholar 

  54. Manghwar H, Lindsey K, Zhang X et al (2019) CRISPR/Cas system: recent advances and future prospects for genome editing. Trends Plant Sci 24(12):1102–1125

    Article  CAS  PubMed  Google Scholar 

  55. Sun J, Wang Q, Jiang Y et al (2018) Genome editing and transcriptional repression in Pseudomonas putida KT2440 via the type II CRISPR system. Microb Cell Factories 17(1):41

    Article  Google Scholar 

  56. Zheng T, Hou Y, Zhang P et al (2017) Profiling single-guide RNA specificity reveals a mismatch sensitive core sequence. Sci Rep 7:40638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lageveen RG, Huisman GW, Preusting H et al (1988) Formation of polyesters by Pseudomonas oleovorans: effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-3-hydroxyalkenoates. Appl Environ Microbiol 54(12):2924–2932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin E. O’Connor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Liu, S., Narancic, T., Davis, C., O’Connor, K.E. (2022). CRISPR-Cas9 Editing of the Synthesis of Biodegradable Polyesters Polyhydroxyalkanaotes (PHA) in Pseudomonas putida KT2440. In: Magnani, F., Marabelli, C., Paradisi, F. (eds) Enzyme Engineering. Methods in Molecular Biology, vol 2397. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1826-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1826-4_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1825-7

  • Online ISBN: 978-1-0716-1826-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics