Skip to main content

A Guide to Using FASTPCR Software for PCR, In Silico PCR, and Oligonucleotide Analysis

  • Protocol
  • First Online:
PCR Primer Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2392))

Abstract

The FastPCR software is an integrated tool environment for PCR primer and probe design and for prediction of oligonucleotide properties. The software provides comprehensive tools for designing primers for most PCR and perspective applications, including standard, multiplex, long-distance, inverse, real-time with TaqMan probe, Xtreme Chain Reaction (XCR), group-specific, overlap extension PCR for multifragment assembling cloning, and isothermal amplification (Loop-mediated Isothermal Amplification). A program is available to design specific oligonucleotide sets for long sequence assembly by ligase chain reaction and to design multiplexed of overlapping and nonoverlapping DNA amplicons that tile across a region(s) of interest for targeted next-generation sequencing, competitive allele-specific PCR (KASP)-based genotyping assay for single-nucleotide polymorphisms and insertions and deletions at specific loci, among other features. The in silico PCR primer or probe search includes comprehensive analyses of individual primers and primer pairs. FastPCR includes various bioinformatics tools for analysis and searching of sequences, restriction I–II–III-type enzyme endonuclease analysis, and pattern searching. The program also supports the assembly of a set of contiguous sequences, consensus sequence generation, and sequence similarity and conservancy analysis. FastPCR performs efficient and complete detection of various repeat types with visual display. FastPCR allows for sequence file batch processing that is essential for automation. The software is available for download at https://primerdigital.com/fastpcr.html and online version at https://primerdigital.com/tools/pcr.html.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yasukawa K, Yanagihara I, Fujiwara S (2020) Alteration of enzymes and their application to nucleic acid amplification (Review). Int J Mol Med 46(5):1633–1643. https://doi.org/10.3892/ijmm.2020.4726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gill P, Ghaemi A (2008) Nucleic acid isothermal amplification technologies: a review. Nucleosides Nucleotides Nucleic Acids 27(3):224–243. https://doi.org/10.1080/15257770701845204

    Article  CAS  PubMed  Google Scholar 

  3. Bekaert M, Teeling EC (2008) UniPrime: a workflow-based platform for improved universal primer design. Nucleic Acids Res 36(10):e56. https://doi.org/10.1093/nar/gkn191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13:134. https://doi.org/10.1186/1471-2105-13-134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Guo J, Starr D, Guo H, Wren J (2020) Classification and review of free PCR primer design software. Bioinformatics 36(22-23):5263–5268. https://doi.org/10.1093/bioinformatics/btaa910

    Article  CAS  Google Scholar 

  6. Shirato K (2019) Detecting amplicons of loop-mediated isothermal amplification. Microbiol Immunol 63(10):407–412. https://doi.org/10.1111/1348-0421.12734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mayboroda O, Katakis I, O’Sullivan CK (2018) Multiplexed isothermal nucleic acid amplification. Anal Biochem 545:20–30. https://doi.org/10.1016/j.ab.2018.01.005

    Article  CAS  PubMed  Google Scholar 

  8. Kim J, Easley CJ (2011) Isothermal DNA amplification in bioanalysis: strategies and applications. Bioanalysis 3(2):227–239. https://doi.org/10.4155/bio.10.172

    Article  CAS  PubMed  Google Scholar 

  9. Tomita N, Mori Y, Kanda H, Notomi T (2008) Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat Protoc 3(5):877–882. https://doi.org/10.1038/nprot.2008.57

    Article  CAS  PubMed  Google Scholar 

  10. James A, Macdonald J (2015) Recombinase polymerase amplification: emergence as a critical molecular technology for rapid, low-resource diagnostics. Expert Rev Mol Diagn 15(11):1475–1489. https://doi.org/10.1586/14737159.2015.1090877

    Article  CAS  PubMed  Google Scholar 

  11. Qian J, Boswell SA, Chidley C, Lu Z-x, Pettit ME, Gaudio BL, Fajnzylber JM, Ingram RT, Ward RH, Li JZ, Springer M (2020) An enhanced isothermal amplification assay for viral detection. Nat Commun 11(1):5920. https://doi.org/10.1038/s41467-020-19258-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Qiu J, Tsai Y-L, Wang H-TT, Chang H-FG, Tsai C-F, Lin C-K, Teng P-H, Su C, Jeng C-C, Lee P-Y (2012) Development of TaqMan probe-based insulated isothermal PCR (iiPCR) for sensitive and specific on-site pathogen detection. PLoS One 7(9). https://doi.org/10.1371/journal.pone.0045278

  13. Kalendar R, Khassenov B, Ramanculov E, Samuilova O, Ivanov KI (2017) FastPCR: an in silico tool for fast primer and probe design and advanced sequence analysis. Genomics 109(3-4):312–319. https://doi.org/10.1016/j.ygeno.2017.05.005

    Article  CAS  PubMed  Google Scholar 

  14. Kalendar R, Lee D, Schulman AH (2011) Java web tools for PCR, in silico PCR, and oligonucleotide assembly and analysis. Genomics 98(2):137–144. https://doi.org/10.1016/j.ygeno.2011.04.009

    Article  CAS  PubMed  Google Scholar 

  15. Kalendar R, Muterko A, Shamekova M, Zhambakin K (2017) In silico PCR tools for a fast primer, probe, and advanced searching. Methods Mol Biol 1620:1–31. https://doi.org/10.1007/978-1-4939-7060-5_1

    Article  CAS  PubMed  Google Scholar 

  16. Kalendar R, Lee D, Schulman AH (2014) FastPCR software for PCR, in silico PCR, and oligonucleotide assembly and analysis. Methods Mol Biol 1116:271–302. https://doi.org/10.1007/978-1-62703-764-8_18

    Article  CAS  PubMed  Google Scholar 

  17. Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, Basutkar P, Tivey ARN, Potter SC, Finn RD, Lopez R (2019) The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res 47(W1):W636–W641. https://doi.org/10.1093/nar/gkz268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Benita Y, Oosting RS, Lok MC, Wise MJ, Humphery-Smith I (2003) Regionalized GC content of template DNA as a predictor of PCR success. Nucleic Acids Res 31(16):e99. https://doi.org/10.1093/nar/gng101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. SantaLucia J (1998) A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc Natl Acad Sci USA 95(4):1460–1465. https://doi.org/10.1073/pnas.95.4.1460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Allawi HT, SantaLucia J Jr (1997) Thermodynamics and NMR of internal G.T mismatches in DNA. Biochemistry 36(34):10581–10594. https://doi.org/10.1021/bi962590c

    Article  CAS  PubMed  Google Scholar 

  22. Guedin A, Gros J, Alberti P, Mergny JL (2010) How long is too long? Effects of loop size on G-quadruplex stability. Nucleic Acids Res 38(21):7858–7868. https://doi.org/10.1093/nar/gkq639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gilson MK, Given JA, Bush BL, McCammon JA (1997) The statistical-thermodynamic basis for computation of binding affinities: a critical review. Biophys J 72(3):1047–1069. https://doi.org/10.1016/S0006-3495(97)78756-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Watkins NE Jr, SantaLucia J Jr (2005) Nearest-neighbor thermodynamics of deoxyinosine pairs in DNA duplexes. Nucleic Acids Res 33(19):6258–6267. https://doi.org/10.1093/nar/gki918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. SantaLucia J Jr, Hicks D (2004) The thermodynamics of DNA structural motifs. Annu Rev Biophys Biomol Struct 33:415–440. https://doi.org/10.1146/annurev.biophys.32.110601.141800

    Article  CAS  PubMed  Google Scholar 

  26. Todd AK, Johnston M, Neidle S (2005) Highly prevalent putative quadruplex sequence motifs in human DNA. Nucleic Acids Res 33(9):2901–2907. https://doi.org/10.1093/nar/gki553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jurka J (1998) Repeats in genomic DNA: mining and meaning. Curr Opin Struct Biol 8(3):333–337. https://doi.org/10.1016/s0959-440x(98)80067-5

    Article  CAS  PubMed  Google Scholar 

  28. Kalendar R, Raskina O, Belyayev A, Schulman AH (2020) Long tandem arrays of cassandra retroelements and their role in genome dynamics in plants. Int J Mol Sci 21(8):2931. https://doi.org/10.3390/ijms21082931

    Article  CAS  PubMed Central  Google Scholar 

  29. Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18(24):7213–7218. https://doi.org/10.1093/nar/18.24.7213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18(22):6531–6535. https://doi.org/10.1093/nar/18.22.6531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sivolap IM, Kalendar RN, Chebotar SV (1994) The genetic polymorphism of cereals demonstrated by PCR with random primers. Cytol Genet 28(6):54–61. https://pubmed.ncbi.nlm.nih.gov/7701604/

    CAS  Google Scholar 

  32. Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20(2):176–183. https://doi.org/10.1006/geno.1994.1151

    Article  CAS  PubMed  Google Scholar 

  33. Kalendar R, Schulman A (2006) IRAP and REMAP for retrotransposon-based genotyping and fingerprinting. Nat Protoc 1(5):2478–2484. https://doi.org/10.1038/nprot.2006.377

    Article  CAS  PubMed  Google Scholar 

  34. Kalendar R, Grob T, Regina M, Suoniemi A, Schulman AH (1999) IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet 98(5):704–711. https://doi.org/10.1007/s001220051124

    Article  CAS  Google Scholar 

  35. Chang RY, O’Donoughue LS, Bureau TE (2001) Inter-MITE polymorphisms (IMP): a high throughput transposon-based genome mapping and fingerprinting approach. Theor Appl Genet 102(5):773–781. https://doi.org/10.1007/s001220051709

    Article  CAS  Google Scholar 

  36. Seibt KM, Wenke T, Wollrab C, Junghans H, Muders K, Dehmer KJ, Diekmann K, Schmidt T (2012) Development and application of SINE-based markers for genotyping of potato varieties. Theor Appl Genet 125(1):185–196. https://doi.org/10.1007/s00122-012-1825-7

    Article  CAS  PubMed  Google Scholar 

  37. Kalendar R, Antonius K, Smykal P, Schulman AH (2010) iPBS: a universal method for DNA fingerprinting and retrotransposon isolation. Theor Appl Genet 121(8):1419–1430. https://doi.org/10.1007/s00122-010-1398-2

    Article  CAS  PubMed  Google Scholar 

  38. Kalendar R, Amenov A, Daniyarov A (2019) Use of retrotransposon-derived genetic markers to analyse genomic variability in plants. Funct Plant Biol 46(1):15–29. https://doi.org/10.1071/fp18098

    Article  CAS  Google Scholar 

  39. Kalendar R, Muterko A, Boronnikova S (2021) Retrotransposable elements: DNA fingerprinting and the assessment of genetic diversity. Methods Mol Biol 2222:263–286. https://doi.org/10.1007/978-1-0716-0997-2_15

    Article  CAS  PubMed  Google Scholar 

  40. Kalendar R, Schulman AH (2014) Transposon-based tagging: IRAP, REMAP, and iPBS. Methods Mol Biol 1115:233–255. https://doi.org/10.1007/978-1-62703-767-9_12

    Article  CAS  PubMed  Google Scholar 

  41. Hosid E, Brodsky L, Kalendar R, Raskina O, Belyayev A (2012) Diversity of long terminal repeat retrotransposon genome distribution in natural populations of the wild diploid wheat Aegilops speltoides. Genetics 190(1):263–412. https://doi.org/10.1534/genetics.111.134643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kalendar R, Kospanova D, Schulman A (2021) Transposon-based tagging in silico using FastPCR software. Methods Mol Biol 2250:245–256. https://doi.org/10.1007/978-1-0716-1134-0_23

    Article  CAS  PubMed  Google Scholar 

  43. Kalendar R, Shustov AV, Seppänen MM, Schulman AH, Stoddard FL (2019) Palindromic sequence-targeted (PST) PCR: a rapid and efficient method for high-throughput gene characterization and genome walking. Sci Rep 9(1):17707. https://doi.org/10.1038/s41598-019-54168-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the company PrimerDigital Ltd. (Helsinki, Finland) and partly by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (Grant No. AP08855353). The authors wish to thank Derek Ho (The University of Helsinki Language Centre) for editing and proofreading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruslan Kalendar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kalendar, R. (2022). A Guide to Using FASTPCR Software for PCR, In Silico PCR, and Oligonucleotide Analysis. In: Basu, C. (eds) PCR Primer Design. Methods in Molecular Biology, vol 2392. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1799-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1799-1_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1798-4

  • Online ISBN: 978-1-0716-1799-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics