Skip to main content

Universal Primers for Detection of Novel Plant Capsid-Less Viruses: Papaya Umbra-like Viruses as Example

  • Protocol
  • First Online:
PCR Primer Design

Abstract

For diagnosis of positive-sense single-stranded RNA viruses, primers are usually raised against the sequence encoding capsid proteins, since structural proteins are more conserved. This chapter focuses on the design of primers for a group of novel viruses lacking a capsid, known as papaya Umbra-like viruses (unassigned genus) associated with Papaya Sticky Disease, which represent a threat to papaya production. Based on sequence alignments of a region encoding the RNA-dependent RNA Polymerase, universal primers to detect all the known viruses from four countries are proposed. The Forward universal primer can be used in combination with clade- and subclade-specific primers for rapid virus identification. We walk the reader through downloading sequences from nucleotide databases, doing sequence alignments and phylogenetic tree construction to identify conserved and variable regions as valid primer targets; we also show how to design and analyze the primers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

bp:

Base pair

BLAST:

Basic Local Alignment Search Tool

CDS:

Coding sequence

dsRNA:

Double-stranded RNA

Indels:

Insertion–deletions

kb:

Kilobases

kcal/mol:

Kilocalorie per mole

ML:

Maximum Likelihood

NCBI:

National Center for Biotechnology Information

NGS:

Next-Generation Sequencing

NJ:

Neighbor-Joining

PMeV:

Papaya meleira virus

PMeV-1:

Papaya meleira virus 1

PMeV-2:

Papaya meleira virus 2

PMeV-Mx:

Papaya meleira virus-Mexican variant

PpVQ:

Papaya virus Q

PRSV-P:

Papaya ringspot virus type P

PSD:

Papaya Sticky Disease

PCR:

Polymerase chain reaction

qPCR:

Quantitative PCR

RdRP:

RNA-dependent RNA Polymerase

(+) RNA:

Positive-sense single-stranded RNA

RT-PCR:

Reverse transcription polymerase chain reaction

T m :

Melting temperature

References

  1. Dolja VV, Koonin EV (2018) Metagenomics reshapes the concepts of RNA virus evolution by revealing extensive horizontal virus transfer. Virus Res 244:36–52. https://doi.org/10.1016/j.virusres.2017.10.020

    Article  CAS  PubMed  Google Scholar 

  2. Roossinck MJ, Martin DJ, Roumagnac P (2015) Plant virus metagenomics: advances in virus discovery. Phytopathology 105:6, 716–727

    Article  Google Scholar 

  3. Dolja VV, Krupovic M, Koonin EV (2020) Annu Rev Phytopathol 58:23–53. https://doi.org/10.1146/annurev-phyto-030320-041346

    Article  CAS  PubMed  Google Scholar 

  4. Rubio L, Galipienso L, Ferriol I (2020) Detection of plant viruses and disease management: relevance of genetic diversity and evolution. Front Plant Sci 11:1092. https://doi.org/10.3389/fpls.2020.01092

    Article  PubMed  PubMed Central  Google Scholar 

  5. Alcala-Briseño RI, Casarrubias-Castillo K, López-Ley D et al (2020) Network analysis of the Papaya Orchard Virome from two agroecological regions of Chiapas, Mexico. mSystems 5:e00423-19. https://doi.org/10.1128/mSystems.00423-19

    Article  PubMed  PubMed Central  Google Scholar 

  6. Garcia-Camara I, Tapia-Tussell R, Magaña-Alvarez A et al (2019) Empoasca papayae (Hemiptera: Cicadellidae)-mediated transmission of Papaya meleira virus-Mexican variant in Mexico. Plant Dis 103:2015–2023

    Article  CAS  PubMed  Google Scholar 

  7. Sá-Antunes TF, Maurastoni M, Madroñero LJ (2020) Battle of three: the curious case of papaya sticky disease. Plant Dis 104:2754–2763. https://doi.org/10.1094/PDIS-12-19-2622-FE

    Article  PubMed  Google Scholar 

  8. Campbell P (2018) New test to offer early detection of papaya sticky disease. Papaya Press. https://australianpapaya.com.au/website/wp-content/uploads/2018/05/PAPAYAPRESS-MAY.pdf

    Google Scholar 

  9. Maciel-Zambolim E, Kunieda-Alonso S, Matsuoka K, De Carvalho M, Zerbini F (2003) Purification and some properties of Papaya meleira virus, a novel virus infecting papayas in Brazil. Plant Pathol 52:389–394

    Article  CAS  Google Scholar 

  10. Abreu EFM, Daltro CB, Nogueira EOPL et al (2015) Sequence and genome organization of papaya meleira virus infecting papaya in Brazil. Arch Virol 160:3143–3147

    Article  CAS  PubMed  Google Scholar 

  11. Perez-Brito D, Tapia-Tussell R, Cortes-Velazquez A et al (2012) First report of papaya meleira virus (PMeV) in Mexico. Afr J Biotechnol 11:13564–13570

    Article  CAS  Google Scholar 

  12. Abreu PMV, Piccin JG, Rodrigues SP et al (2012) Molecular diagnosis of Papaya meleira virus (PMeV) from leaf samples of Carica papaya L. using conventional and real-time RTPCR. J Virol Methods 180:11–17

    Article  CAS  PubMed  Google Scholar 

  13. Zamudio-Moreno E, Ramirez-Prado J, Moreno-Valenzuela O et al (2015) Early diagnosis of a Mexican variant of Papaya meleira virus (PMeV-Mx) by RT-PCR. Genet Mol Res 14:1145–1154

    Article  CAS  PubMed  Google Scholar 

  14. Quito-Avila DF, Alvarez RA, Ibarra MA et al (2015) Detection and partial genome sequence of a new umbra-like virus of papaya discovered in Ecuador. Eur J Plant Pathol 143:199–204

    Article  Google Scholar 

  15. Sa Antunes TFS, Amaral RJV, Ventura JA et al (2016) The dsRNA virus papaya meleira virus and an ssRNA virus are associated with papaya sticky disease. PLoS One 11:e01552

    Google Scholar 

  16. Tapia-Tussell R, Magaña-Alvarez A, Cortes-Velazquez A et al (2015) Seed transmission of Papaya meleira virus in papaya (Carica papaya) cv. Maradol. Plant Pathol 64:272–275

    Article  CAS  Google Scholar 

  17. Resource Coordinators NCBI (2016) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 44:D7–D19. https://doi.org/10.1093/nar/gkv1290

    Article  CAS  Google Scholar 

  18. Zhang Z, Schwartz S, Wagner L et al (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214. https://doi.org/10.1089/10665270050081478

    Article  CAS  PubMed  Google Scholar 

  19. Katoh K, Rozewicki J, Yamada KD (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 20:1160–1166. https://doi.org/10.1093/bib/bbx108

    Article  CAS  PubMed  Google Scholar 

  20. Ye J, Coulouris G, Zaretskaya I et al (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinform 13(1):134. https://doi.org/10.1186/1471-2105-13-134

    Article  CAS  Google Scholar 

  21. Karsch-Mizrachi I, Takagi T, Cochrane G & International Nucleotide Sequence Database Collaboration (2018) The international nucleotide sequence database collaboration. Nucleic Acids Res 46:D48–D51. https://doi.org/10.1093/nar/gkx1097

    Article  CAS  PubMed  Google Scholar 

  22. Sievers F, Higgins DG (2021) The clustal omega multiple alignment package. In: Katoh K (ed) Multiple sequence alignment. Methods in molecular biology, vol 2231. Humana Press, New York, NY, pp 3–16. https://doi.org/10.1007/978-1-0716-1036-7_1

    Chapter  Google Scholar 

  23. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Roshan U, Livesay DR (2006) Probalign: multiple sequence alignment using partition function posterior probabilities. Bioinformat 22:2715–2721. https://doi.org/10.1093/bioinformatics/btl472

    Article  CAS  Google Scholar 

  25. Löytynoja A (2014) Phylogeny-aware alignment with PRANK. In: Russel D (ed) Multiple sequence alignment methods. Methods in molecular biology (Methods and protocols), vol 1079. Humana Press, Totowa, NJ, pp 155–170. https://doi.org/10.1007/978-1-62703-646-7_10

    Chapter  Google Scholar 

  26. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

    Article  CAS  PubMed  Google Scholar 

  27. Sokal RR, Michener CD (1958) A statistical method for evaluating systematic relationships. Univ Kans Sci Bull 38:1409–1438

    Google Scholar 

  28. Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 8:1586–1591. https://doi.org/10.1093/molbev/msm088

    Article  CAS  Google Scholar 

  29. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321. https://doi.org/10.1093/sysbio/syq010

    Article  CAS  PubMed  Google Scholar 

  30. Jukes TH, Cantor CR, Munro HN, Allison JB (1969) Evolution of protein molecules. In: Mammalian protein metabolism. Academic, New York

    Google Scholar 

Download references

Acknowledgments

This work was funded by the CONACYT research grant A1-S-19850 to L.L.O.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luisa A. Lopez-Ochoa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ramirez-Prado, J.H., Lopez-Ochoa, L.A. (2022). Universal Primers for Detection of Novel Plant Capsid-Less Viruses: Papaya Umbra-like Viruses as Example. In: Basu, C. (eds) PCR Primer Design. Methods in Molecular Biology, vol 2392. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1799-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1799-1_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1798-4

  • Online ISBN: 978-1-0716-1799-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics