Skip to main content

Extended Drug Access and Escalation of Drug Self-Administration

  • Protocol
  • First Online:
Methods for Preclinical Research in Addiction

Part of the book series: Neuromethods ((NM,volume 174))

Abstract

In this chapter we first describe the intravenous drug self-administration technique in rats, with a focus on cocaine. Where relevant, we also describe how self-administration procedures can be adapted for use in both female and male rats. We then discuss some of the pharmacokinetic variables that can influence the development of behavioral features of cocaine addiction. These variables include the speed of intravenous drug delivery, the amount and temporal pattern (intermittency) of intake. In this context, we present and compare different self-administration procedures that have been used to model DSM-like features relevant to addiction in rats. These procedures include Short-Access, Long-Access, and Intermittent-Access cocaine self-administration, and variations therein. We highlight that some procedures (i.e., Long-Access) are best suited to study changes in cocaine intake over time. Others (i.e., Intermittent-Access) are especially effective to study increases in incentive motivation for cocaine over time. Work comparing these procedures supports two important conclusions. First, excessive/escalating cocaine intake is not a necessary prerequisite to produce the increased incentive motivation that defines the addicted state. Second, Intermittent-Access cocaine self-administration might not only better model human patterns of cocaine intake, but might also be uniquely suited to study the cocaine-induced changes in neurobiology, psychology, and behavior involved in the addiction process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Catania A, Laties V (1999) Pavlov and Skinner: two lives in science (an introduction to B. F. Skinner’s “Some responses to the stimulus ‘Pavlov’”). J Exp Anal Behav 72:455–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Skinner BF (1938) The behavior of organisms. Appleton-Century-Crofts, New York

    Google Scholar 

  3. Spragg SDS (1940) Morphine addiction in chimpanzees, Comparative psychology monographs, vol 15. Johns Hopkins Press, Baltimore, pp 1–132

    Google Scholar 

  4. Weeks JR (1962) Experimental morphine addiction: method for automatic intravenous injections in unrestrained rats. Science 138:143–144

    Article  CAS  PubMed  Google Scholar 

  5. Davis JD (1966) A method for chronic intravenous infusion in freely moving rats. J Exp Anal Behav 9:385–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Weeks JR, Davis JD (1964) Chronic intravenous cannulas for rats. J Appl Physiol 19:540–541

    Article  CAS  PubMed  Google Scholar 

  7. Thompson T, Schuster CR (1964) Morphine self-administration, food-reinforced, and avoidance behaviors in rhesus monkeys. Psychopharmacologia 5:87–94

    Article  CAS  PubMed  Google Scholar 

  8. Deneau G, Yanagita T, Seevers MH (1969) Self-administration of psychoactive substances by the monkey. Psychopharmacologia 16:30–48

    Article  CAS  PubMed  Google Scholar 

  9. Woods JH, Schuster CR (1968) Reinforcement properties of morphine, cocaine, and SPA as a function of unit dose. Int J Addict 3:231–237

    Article  Google Scholar 

  10. Deneau G, Yanagita T, Seevers MH (1964) Psychogenic dependence to a variety of drugs in the monkey. Pharmacologia 6:182–182

    Google Scholar 

  11. Pickens R (1968) Self-administration of stimulants by rats. Int J Addict 3:215–221

    Article  Google Scholar 

  12. Pickens R, Dougherty J, Thompson T (1969) Effects of volume and duration of infusion on cocaine reinforcement with concurrent activity recording. In: NAS-NRC (ed) Minutes of the meeting of the committee on problems of drug dependence. NAS-NRC, Washington, DC, pp 5805–5811

    Google Scholar 

  13. Pickens R, Harris WC (1968) Self-administration of d-amphetamine by rats. Psychopharmacologia 12:158–163

    Article  CAS  PubMed  Google Scholar 

  14. Pickens R, Thompson T (1968) Cocaine-reinforced behavior in rats: effects of reinforcement magnitude and fixed-ratio size. J Pharmacol Exp Ther 161:122–129

    CAS  PubMed  Google Scholar 

  15. Deneau GA, Inoki R (1967) Nicotine self-administration in monkeys. Ann N Y Acad Sci 142:277–279

    Article  Google Scholar 

  16. Schuster CR, Thompson T (1969) Self administration of and behavioral dependence on drugs. Annu Rev Pharmacol 9:483–502

    Article  CAS  PubMed  Google Scholar 

  17. Roberts DC, Gabriele A, Zimmer BA (2013) Conflation of cocaine seeking and cocaine taking responses in IV self-administration experiments in rats: methodological and interpretational considerations. Neurosci Biobehav Rev 37:2026–2036

    Article  CAS  PubMed  Google Scholar 

  18. UNODC. United Nations Office on Drugs and Crime (2017) World drug report 2017

    Google Scholar 

  19. Anthony JC, Warner LA, Kessler RC (1994) Comparative epidemiology of dependence on tobacco, alcohol, controlled substances, and inhalants: basic findings from the national comorbidity survey. Exp Clin Psychopharmacol 2:244–268

    Article  Google Scholar 

  20. Spanagel R (2017) Animal models of addiction. Dialogues Clin Neurosci 19:247–258

    Article  PubMed  PubMed Central  Google Scholar 

  21. APA. DSM V (2013) Diagnostic and statistical manual of mental disorders. American Psychiatric Association

    Google Scholar 

  22. Ahmed SH (2012) The science of making drug-addicted animals. Neuroscience 211:107–125

    Article  CAS  PubMed  Google Scholar 

  23. Kawa AB, Allain F, Robinson TE, Samaha AN (2019) The transition to cocaine addiction: the importance of pharmacokinetics for preclinical models. Psychopharmacology 236:1145–1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Roberts DC, Morgan D, Liu Y (2007) How to make a rat addicted to cocaine. Prog Neuro-Psychopharmacol Biol Psychiatry 31:1614–1624

    Article  CAS  Google Scholar 

  25. Duaux E, Krebs MO, Loo H, Poirier MF (2000) Genetic vulnerability to drug abuse. Eur Psychiatry 15:109–114

    Article  CAS  PubMed  Google Scholar 

  26. Goldman D, Oroszi G, Ducci F (2005) The genetics of addictions: uncovering the genes. Nat Rev Genet 6:521–532

    Article  CAS  PubMed  Google Scholar 

  27. Kreek MJ, Nielsen DA, Butelman ER, LaForge KS (2005) Genetic influences on impulsivity, risk taking, stress responsivity and vulnerability to drug abuse and addiction. Nat Neurosci 8:1450–1457

    Article  CAS  PubMed  Google Scholar 

  28. Sinha R (2008) Chronic stress, drug use, and vulnerability to addiction. Ann N Y Acad Sci 1141:105–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Brady KT, Randall CL (1999) Gender differences in substance use disorders. Psychiatr Clin North Am 22:241–252

    Article  CAS  PubMed  Google Scholar 

  30. Roberts DC, Brebner K, Vincler M, Lynch WJ (2002) Patterns of cocaine self-administration in rats produced by various access conditions under a discrete trials procedure. Drug Alcohol Depend 67:291–299

    Article  CAS  PubMed  Google Scholar 

  31. Caprioli D, Celentano M, Paolone G et al (2008) Opposite environmental regulation of heroin and amphetamine self-administration in the rat. Psychopharmacology 198:395–404

    Article  CAS  PubMed  Google Scholar 

  32. Algallal H, Allain F, Ndiaye NA, Samaha AN (2020) Sex differences in cocaine self-administration behavior under long access versus intermittent access conditions. Addict Biol 25:e12809

    Article  CAS  PubMed  Google Scholar 

  33. Allain F, Roberts DC, Levesque D, Samaha AN (2017) Intermittent intake of rapid cocaine injections promotes robust psychomotor sensitization, increased incentive motivation for the drug and mGlu2/3 receptor dysregulation. Neuropharmacology 117:227–237

    Article  CAS  PubMed  Google Scholar 

  34. Allain F, Samaha AN (2018) Revisiting long-access versus short-access cocaine self-administration in rats: intermittent intake promotes addiction symptoms independent of session length. Addict Biol 24:641–651

    Article  PubMed  CAS  Google Scholar 

  35. Sizemore GM, Gaspard TM, Kim SA et al (1997) Dose-effect functions for cocaine self-administration: effects of schedule and dosing procedure. Pharmacol Biochem Behav 57:523–531

    Article  CAS  PubMed  Google Scholar 

  36. Lynch WJ, Taylor JR (2004) Sex differences in the behavioral effects of 24-h/day access to cocaine under a discrete trial procedure. Neuropsychopharmacology 29:943–951

    Article  CAS  PubMed  Google Scholar 

  37. Carroll ME, Morgan AD, Lynch WJ et al (2002) Intravenous cocaine and heroin self-administration in rats selectively bred for differential saccharin intake: phenotype and sex differences. Psychopharmacology 161:304–313

    Article  CAS  PubMed  Google Scholar 

  38. Hu M, Crombag HS, Robinson TE, Becker JB (2004) Biological basis of sex differences in the propensity to self-administer cocaine. Neuropsychopharmacology 29:81–85

    Article  CAS  PubMed  Google Scholar 

  39. Kawa AB, Robinson TE (2019) Sex differences in incentive-sensitization produced by intermittent access cocaine self-administration. Psychopharmacology 236:625–639

    Article  CAS  PubMed  Google Scholar 

  40. Spealman RD, Goldberg SR (1978) Drug self-administration by laboratory animals: control by schedules of reinforcement. Annu Rev Pharmacol Toxicol 18:313–339

    Article  CAS  PubMed  Google Scholar 

  41. Allain F, Minogianis EA, Roberts DC, Samaha AN (2015) How fast and how often: the pharmacokinetics of drug use are decisive in addiction. Neurosci Biobehav Rev 56:166–179

    Article  PubMed  Google Scholar 

  42. Oleson EB, Roberts DC (2009) Behavioral economic assessment of price and cocaine consumption following self-administration histories that produce escalation of either final ratios or intake. Neuropsychopharmacology 34:796–804

    Article  PubMed  Google Scholar 

  43. Arnold JM, Roberts DC (1997) A critique of fixed and progressive ratio schedules used to examine the neural substrates of drug reinforcement. Pharmacol Biochem Behav 57:441–447

    Article  CAS  PubMed  Google Scholar 

  44. Hodos W (1961) Progressive ratio as a measure of reward strength. Science 134:943–944

    Article  CAS  PubMed  Google Scholar 

  45. Richardson NR, Roberts DC (1996) Progressive ratio schedules in drug self-administration studies in rats: a method to evaluate reinforcing efficacy. J Neurosci Methods 66:1–11

    Article  CAS  PubMed  Google Scholar 

  46. French ED, Lopez M, Peper S et al (1995) A comparison of the reinforcing efficacy of PCP, the PCP derivatives TCP and BTCP, and cocaine using a progressive ratio schedule in the rat. Behav Pharmacol 6:223–228

    Article  CAS  PubMed  Google Scholar 

  47. Morgan D, Liu Y, Roberts DC (2006) Rapid and persistent sensitization to the reinforcing effects of cocaine. Neuropsychopharmacology 31:121–128

    Article  CAS  PubMed  Google Scholar 

  48. Liu Y, Roberts DC, Morgan D (2005) Sensitization of the reinforcing effects of self-administered cocaine in rats: effects of dose and intravenous injection speed. Eur J Neurosci 22:195–200

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ahmed SH, Koob GF (1998) Transition from moderate to excessive drug intake: change in hedonic set point. Science 282:298–300

    Article  CAS  PubMed  Google Scholar 

  50. Ahmed SH, Koob GF (1999) Long-lasting increase in the set point for cocaine self-administration after escalation in rats. Psychopharmacology 146:303–312

    Article  CAS  PubMed  Google Scholar 

  51. Allain F, Bouayad-Gervais K, Samaha AN (2018) High and escalating levels of cocaine intake are dissociable from subsequent incentive motivation for the drug in rats. Psychopharmacology 235:317–328

    Article  CAS  PubMed  Google Scholar 

  52. Ferrario CR, Gorny G, Crombag HS et al (2005) Neural and behavioral plasticity associated with the transition from controlled to escalated cocaine use. Biol Psychiatry 58:751–759

    Article  CAS  PubMed  Google Scholar 

  53. Bouayad-Gervais K, Minogianis EA, Levesque D, Samaha AN (2014) The self-administration of rapidly delivered cocaine promotes increased motivation to take the drug: contributions of prior levels of operant responding and cocaine intake. Psychopharmacology 231:4241–4252

    Article  CAS  PubMed  Google Scholar 

  54. Mandt BH, Copenhagen LI, Zahniser NR, Allen RM (2015) Escalation of cocaine consumption in short and long access self-administration procedures. Drug Alcohol Depend 149:166–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Aujla H, Martin-Fardon R, Weiss F (2008) Rats with extended access to cocaine exhibit increased stress reactivity and sensitivity to the anxiolytic-like effects of the mGluR 2/3 agonist LY379268 during abstinence. Neuropsychopharmacology 33:1818–1826

    Article  CAS  PubMed  Google Scholar 

  56. Wee S, Mandyam CD, Lekic DM, Koob GF (2008) Alpha 1-noradrenergic system role in increased motivation for cocaine intake in rats with prolonged access. Eur Neuropsychopharmacol 18:303–311

    Article  CAS  PubMed  Google Scholar 

  57. Orio L, Edwards S, George O et al (2009) A role for the endocannabinoid system in the increased motivation for cocaine in extended-access conditions. J Neurosci 29:4846–4857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hao Y, Martin-Fardon R, Weiss F (2010) Behavioral and functional evidence of metabotropic glutamate receptor 2/3 and metabotropic glutamate receptor 5 dysregulation in cocaine-escalated rats: factor in the transition to dependence. Biol Psychiatry 68:240–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kippin TE, Fuchs RA, See RE (2006) Contributions of prolonged contingent and noncontingent cocaine exposure to enhanced reinstatement of cocaine seeking in rats. Psychopharmacology 187:60–67

    Article  CAS  PubMed  Google Scholar 

  60. Mantsch JR, Yuferov V, Mathieu-Kia AM et al (2004) Effects of extended access to high versus low cocaine doses on self-administration, cocaine-induced reinstatement and brain mRNA levels in rats. Psychopharmacology 175:26–36

    Article  CAS  PubMed  Google Scholar 

  61. Minogianis EA, Levesque D, Samaha AN (2013) The speed of cocaine delivery determines the subsequent motivation to self-administer the drug. Neuropsychopharmacology 38:2644–2656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wakabayashi KT, Weiss MJ, Pickup KN, Robinson TE (2010) Rats markedly escalate their intake and show a persistent susceptibility to reinstatement only when cocaine is injected rapidly. J Neurosci 30:11346–11355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Roth ME, Carroll ME (2004) Sex differences in the escalation of intravenous cocaine intake following long- or short-access to cocaine self-administration. Pharmacol Biochem Behav 78:199–207

    Article  CAS  PubMed  Google Scholar 

  64. Hatsukami DK, Fischman MW (1996) Crack cocaine and cocaine hydrochloride. Are the differences myth or reality? JAMA 276:1580–1588

    Article  CAS  PubMed  Google Scholar 

  65. Chen CY, Anthony JC (2004) Epidemiological estimates of risk in the process of becoming dependent upon cocaine: cocaine hydrochloride powder versus crack cocaine. Psychopharmacology 172:78–86

    Article  CAS  PubMed  Google Scholar 

  66. Minogianis EA, Shams WM, Mabrouk OS et al (2019) Varying the rate of intravenous cocaine infusion influences the temporal dynamics of both drug and dopamine concentrations in the striatum. Eur J Neurosci 50:2054–2064

    Article  PubMed  Google Scholar 

  67. Samaha AN, Li Y, Robinson TE (2002) The rate of intravenous cocaine administration determines susceptibility to sensitization. J Neurosci 22:3244–3250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Balster RL, Schuster CR (1973) Fixed-interval schedule of cocaine reinforcement: effect of dose and infusion duration. J Exp Anal Behav 20:119–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Crombag HS, Ferrario CR, Robinson TE (2008) The rate of intravenous cocaine or amphetamine delivery does not influence drug-taking and drug-seeking behavior in rats. Pharmacol Biochem Behav 90:797–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kato S, Wakasa Y, Yanagita T (1987) Relationship between minimum reinforcing doses and injection speed in cocaine and pentobarbital self-administration in crab-eating monkeys. Pharmacol Biochem Behav 28:407–410

    Article  CAS  PubMed  Google Scholar 

  71. Panlilio LV, Goldberg SR, Gilman JP et al (1998) Effects of delivery rate and non-contingent infusion of cocaine on cocaine self-administration in rhesus monkeys. Psychopharmacology 137:253–258

    Article  CAS  PubMed  Google Scholar 

  72. Schindler CW, Cogan ES, Thorndike EB, Panlilio LV (2011) Rapid delivery of cocaine facilitates acquisition of self-administration in rats: an effect masked by paired stimuli. Pharmacol Biochem Behav 99:301–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Woolverton WL, Wang Z (2004) Relationship between injection duration, transporter occupancy and reinforcing strength of cocaine. Eur J Pharmacol 486:251–257

    Article  CAS  PubMed  Google Scholar 

  74. Beveridge TJR, Wray P, Brewer A et al (2012) Analyzing human cocaine use patterns to inform animal addiction model development. Published abstract for the College on problems of drug dependence annual meeting, Palm Springs, CA

    Google Scholar 

  75. Zimmer BA, Oleson EB, Roberts DC (2012) The motivation to self-administer is increased after a history of spiking brain levels of cocaine. Neuropsychopharmacology 37:1901–1910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Calipari ES, Ferris MJ, Zimmer BA et al (2013) Temporal pattern of cocaine intake determines tolerance vs sensitization of cocaine effects at the dopamine transporter. Neuropsychopharmacology 38:2385–2392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kawa AB, Bentzley BS, Robinson TE (2016) Less is more: prolonged intermittent access cocaine self-administration produces incentive-sensitization and addiction-like behavior. Psychopharmacology 233:3587–3602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zimmer BA, Dobrin CV, Roberts DC (2011) Brain-cocaine concentrations determine the dose self-administered by rats on a novel behaviorally dependent dosing schedule. Neuropsychopharmacology 36:2741–2749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kawa AB, Valenta AC, Kennedy RT, Robinson TE (2019) Incentive and dopamine sensitization produced by intermittent but not long access cocaine self-administration. Eur J Neurosci 50:2663–2682

    Article  PubMed  PubMed Central  Google Scholar 

  80. Nicolas C, Russell TI, Pierce AF et al (2019) Incubation of cocaine craving after intermittent-access self-administration: sex differences and estrous cycle. Biol Psychiatry 85:915–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Depoortere RY, Li DH, Lane JD, Emmett-Oglesby MW (1993) Parameters of self-administration of cocaine in rats under a progressive-ratio schedule. Pharmacol Biochem Behav 45:539–548

    Article  CAS  PubMed  Google Scholar 

  82. Bentzley BS, Fender KM, Aston-Jones G (2013) The behavioral economics of drug self-administration: a review and new analytical approach for within-session procedures. Psychopharmacology 226:113–125

    Article  CAS  PubMed  Google Scholar 

  83. Bentzley BS, Jhou TC, Aston-Jones G (2014) Economic demand predicts addiction-like behavior and therapeutic efficacy of oxytocin in the rat. Proc Natl Acad Sci U S A 111:11822–11827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hursh SR (1991) Behavioral economics of drug self-administration and drug abuse policy. J Exp Anal Behav 56:377–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Oleson EB, Richardson JM, Roberts DC (2011) A novel IV cocaine self-administration procedure in rats: differential effects of dopamine, serotonin, and GABA drug pre-treatments on cocaine consumption and maximal price paid. Psychopharmacology 214:567–577

    Article  CAS  PubMed  Google Scholar 

  86. Paterson NE, Markou A (2003) Increased motivation for self-administered cocaine after escalated cocaine intake. Neuroreport 14:2229–2232

    Article  CAS  PubMed  Google Scholar 

  87. Wee S, Orio L, Ghirmai S et al (2009) Inhibition of kappa opioid receptors attenuated increased cocaine intake in rats with extended access to cocaine. Psychopharmacology 205:565–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Minogianis EA, Samaha AN (2020) Taking rapid and intermittent cocaine infusions enhances both incentive motivation for the drug and cocaine-induced gene regulation in corticostriatal regions. bioRxiv:2020.04.22.055715

    Google Scholar 

  89. Benowitz NL, Henningfield JE (1994) Establishing a nicotine threshold for addiction. The implications for tobacco regulation. N Engl J Med 331:123–125

    Article  CAS  PubMed  Google Scholar 

  90. Jonkman S, Pelloux Y, Everitt BJ (2012) Drug intake is sufficient, but conditioning is not necessary for the emergence of compulsive cocaine seeking after extended self-administration. Neuropsychopharmacology 37:1612–1619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Griffin ML, Weiss RD, Mirin SM, Lange U (1989) A comparison of male and female cocaine abusers. Arch Gen Psychiatry 46:122–126

    Article  CAS  PubMed  Google Scholar 

  92. Elman I, Karlsgodt KH, Gastfriend DR (2001) Gender differences in cocaine craving among non-treatment-seeking individuals with cocaine dependence. Am J Drug Alcohol Abuse 27:193–202

    Article  CAS  PubMed  Google Scholar 

  93. McKay JR, Rutherford MJ, Cacciola JS et al (1996) Gender differences in the relapse experiences of cocaine patients. J Nerv Ment Dis 184:616–622

    Article  CAS  PubMed  Google Scholar 

  94. McCance-Katz EF, Carroll KM, Rounsaville BJ (1999) Gender differences in treatment-seeking cocaine abusers—implications for treatment and prognosis. Am J Addict 8:300–311

    Article  CAS  PubMed  Google Scholar 

  95. Kosten TA, Gawin FH, Kosten TR, Rounsaville BJ (1993) Gender differences in cocaine use and treatment response. J Subst Abus Treat 10:63–66

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne-Noël Samaha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Allain, F., Ndiaye, N.A., Samaha, AN. (2022). Extended Drug Access and Escalation of Drug Self-Administration. In: Aguilar, M.A. (eds) Methods for Preclinical Research in Addiction. Neuromethods, vol 174. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1748-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1748-9_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1747-2

  • Online ISBN: 978-1-0716-1748-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics