Skip to main content

Quantitative Genetic Screens for Mapping Bacterial Pathways and Functional Networks

  • Protocol
  • First Online:
Mapping Genetic Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2381))

  • 1091 Accesses

Abstract

Escherichia coli synthetic genetic array (eSGA) screening procedure enables high-throughput systematic mapping of pairwise genetic interactions in E. coli. The eSGA method exploits E. coli’s rapid growth, its ease of genetic manipulation, and efficient genetic exchange via conjugation. Replica pinning is used to grow and mate arrayed sets of single gene mutant strains as well as to select double mutants en masse. Strain fitness, which is the eSGA readout, is determined by the digital imaging of the plates and subsequent colony size measurements. Comparing single and double mutant colony sizes then allows for identifying interacting genes. Using eSGA on a global or a smaller process-centric scale can help reveal gene functions and reconstruct genetic interaction networks with known and novel connections between genes and pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kho ZY, Lal SK (2018) The human gut microbiome – A potential controller of wellness and disease. Front Microbiol 9:1835

    Article  PubMed  PubMed Central  Google Scholar 

  2. Belizário JE, Napolitano M (2015) Human microbiomes and their roles in dysbiosis, common diseases, and novel therapeutic approaches. Front Microbiol 6:1050

    Article  PubMed  PubMed Central  Google Scholar 

  3. Schulz F, Eloe-Fadrosh EA, Bowers RM, Jarett J, Nielsen T, Ivanova NN, Kyrpides NC, Woyke T (2017) Towards a balanced view of the bacterial tree of life. Microbiome 5:140

    Article  PubMed  PubMed Central  Google Scholar 

  4. Katouli M (2010) Population structure of gut Escherichia coli and its role in development of extra-intestinal infections. Iran J Microbiol 2:59–72

    PubMed  PubMed Central  Google Scholar 

  5. Christofi T, Panayidou S, Dieronitou I, Michael C, Apidianakis Y (2019) Metabolic output defines Escherichia coli as a health-promoting microbe against intestinal Pseudomonas aeruginosa. Sci Rep 9:14463

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Cork JM, Purugganan MD (2004) The evolution of molecular genetic pathways and networks. BioEssays 26:479–484

    Article  CAS  PubMed  Google Scholar 

  7. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:2006.0008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Gagarinova A, Emili A (2012) Genome-scale genetic manipulation methods for exploring bacterial molecular biology. Mol BioSyst 8:1626–1638

    Article  CAS  PubMed  Google Scholar 

  9. Gagarinova A, Emili A (2015) Investigating bacterial protein synthesis using systems biology approaches. Adv Exp Med Biol 883:21–40

    Article  CAS  PubMed  Google Scholar 

  10. Gagarinova A, Stewart G, Samanfar B, Phanse S, White CA, Aoki H, Deineko V, Beloglazova N, Yakunin AF, Golshani A, Brown ED, Babu M, Emili A (2016) Systematic genetic screens reveal the dynamic global functional organization of the bacterial translation machinery. Cell Rep 17:904–916

    Article  CAS  PubMed  Google Scholar 

  11. Dammel CS, Noller HF (1995) Suppression of a cold-sensitive mutation in 16S rRNA by overexpression of a novel ribosome-binding factor, RbfA. Genes Dev 9:626–637

    Article  CAS  PubMed  Google Scholar 

  12. Roy-Chaudhuri B, Kirthi N, Kelley T, Culver GM (2008) Suppression of a cold-sensitive mutation in ribosomal protein S5 reveals a role for RimJ in ribosome biogenesis. Mol Microbiol 68:1547–1559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Babu M, Musso G, Diaz-Mejia JJ, Butland G, Greenblatt JF, Emili A (2009) Systems-level approaches for identifying and analyzing genetic interaction networks in Escherichia coli and extensions to other prokaryotes. Mol BioSyst 12:1439–1455

    Article  CAS  Google Scholar 

  14. Beltrao P, Cagney G, Krogan NJ (2010) Quantitative genetic interactions reveal biological modularity. Cell 141:739–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Beyer A, Bandyopadhyay S, Ideker T (2007) Integrating physical and genetic maps: from genomes to interaction networks. Nat Rev Genet 8:699–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tong AH, Evangelista M, Parsons AB, Xu H, Bader GD, Page N, Robinson M, Raghibizadeh S, Hogue CW, Bussey H, Andrews B, Tyers M, Boone C (2001) Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294:2364–2368

    Article  CAS  PubMed  Google Scholar 

  17. Babu M, Butland G, Pogoutse O, Li J, Greenblatt JF, Emili A (2009) Sequential peptide affinity purification system for the systematic isolation and identification of protein complexes from Escherichia coli. Methods Mol Biol 564:373–400

    Article  CAS  PubMed  Google Scholar 

  18. Babu M, DíaZ-Mejia JJ, Phanse S, Ding H, Gagarinova A, Graham C, Vlasblom J, Hu P, Vuckovic D, Yousif F, Nazarians-Armavil A, Pogoutse O, Ali M, Moreno-Hagelseib G, Greenblatt JF, Emili A (2010) Genetic interaction profiling reveals the global functional organization of cell-envelope pathways in Escherichia coli. Cell (Submitted)

    Google Scholar 

  19. Butland G, Babu M, Díaz-Mejía JJ, Bohdana F, Phanse S, Gold B, Yang W, Li J, Gagarinova AG, Pogoutse O, Mori H, Wanner BL, Lo H, Wasniewski J, Christopolous C, Ali M, Venn P, Safavi-Naini A, Sourour N, Caron S, Choi JY, Laigle L, Nazarians-Armavil A, Deshpande A, Joe S, Datsenko KA, Yamamoto N, Andrews BJ, Boone C, Ding H, Sheikh B, Moreno-Hagelseib G, Greenblatt JF, Emili A (2008) eSGA: E. coli synthetic genetic array analysis. Nat Methods 5:789–795

    Article  CAS  PubMed  Google Scholar 

  20. Gagarinova A, Babu M, Greenblatt J, Emili A (2012) Mapping bacterial functional networks and pathways in Escherichia coli using synthetic genetic arrays. J Vis Exp (69):e4056

    Google Scholar 

  21. Typas A, Nichols RJ, Siegele DA, Shales M, Collins SR, Lim B, Braberg H, Yamamoto N, Takeuchi R, Wanner BL, Mori H, Weissman JS, Krogan NJ, Gross CA (2008) High-throughput, quantitative analyses of genetic interactions in E. coli. Nat Methods 5:781–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Firth N, Ippen-Ihler K, Skurray RA (1996) Structure and function of the F-factor and mechanism of conjugation. In: Neidhardt FC (ed) Escherichia coli and Salmonella: cellular and molecular biology, vol 1. ASM Press, Washington, DC, pp 2377–2401

    Google Scholar 

  23. Ippen-Ihler KA, Minkley EG Jr (1986) The conjugation system of F, the fertility factor of Escherichia coli. Annu Rev Genet 20:593–624

    Article  CAS  PubMed  Google Scholar 

  24. Chumley FG, Menzel R, Roth JR (1979) Hfr formation directed by Tn10. Genetics 91:639–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kuzminov A (1999) Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda. Microbiol Mol Biol Rev 63:751–813, table of contents

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Davierwala AP, Haynes J, Li Z, Brost RL, Robinson MD, Yu L, Mnaimneh S, Ding H, Zhu H, Chen Y, Cheng X, Brown GW, Boone C, Andrews BJ, Hughes TR (2005) The synthetic genetic interaction spectrum of essential genes. Nat Genet 37:1147–1152

    Article  CAS  PubMed  Google Scholar 

  27. Breslow DK, Cameron DM, Collins SR, Schuldiner M, Stewart-Ornstein J, Newman HW, Braun S, Madhani HD, Krogan NJ, Weissman JS (2008) A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat Methods 5:711–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kintses B, Jangir PK, Fekete G, Számel M, Méhi O, Spohn R, Daruka L, Martins A, Hosseinnia A, Gagarinova A, Kim S, Phanse S, Csörgő B, Györkei Á, Ari E, Lázár V, Nagy I, Babu M, Pál C, Papp B (2019) Chemical-genetic profiling reveals limited cross-resistance between antimicrobial peptides with different modes of action. Nat Commun 10:5731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Babu M, Arnold R, Bundalovic-Torma C, Gagarinova A, Wong KS, Kumar A, Stewart G, Samanfar B, Aoki H, Wagih O, Vlasblom J, Phanse S, Lad K, Yeou Hsiung Yu A, Graham C, Jin K, Brown E, Golshani A, Kim P, Moreno-Hagelsieb G, Greenblatt J, Houry WA, Parkinson J, Emili A (2014) Quantitative genome-wide genetic interaction screens reveal global epistatic relationships of protein complexes in Escherichia coli. PLoS Genet 10:e1004120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Yu D, Ellis HM, Lee EC, Jenkins NA, Copeland NG, Court DL (2000) An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci U S A 97:5978–5983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schuldiner M, Collins SR, Thompson NJ, Denic V, Bhamidipati A, Punna T, Ihmels J, Andrews B, Boone C, Greenblatt JF, Weissman JS, Krogan NJ (2005) Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell 123:507–519

    Article  CAS  PubMed  Google Scholar 

  32. Bandyopadhyay S, Kelley R, Krogan NJ, Ideker T (2008) Functional maps of protein complexes from quantitative genetic interaction data. PLoS Comput Biol 4:e1000065

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Boone C, Bussey H, Andrews BJ (2007) Exploring genetic interactions and networks with yeast. Nat Rev Genet 8:437–449

    Article  CAS  PubMed  Google Scholar 

  34. Collins SR, Miller KM, Maas NL, Roguev A, Fillingham J, Chu CS, Schuldiner M, Gebbia M, Recht J, Shales M, Ding H, Xu H, Han J, Ingvarsdottir K, Cheng B, Andrews B, Boone C, Berger SL, Hieter P, Zhang Z, Brown GW, Ingles CJ, Emili A, Allis CD, Toczyski DP, Weissman JS, Greenblatt JF, Krogan NJ (2007) Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature 446:806–810

    Article  CAS  PubMed  Google Scholar 

  35. Fiedler D, Braberg H, Mehta M, Chechik G, Cagney G, Mukherjee P, Silva AC, Shales M, Collins SR, van Wageningen S, Kemmeren P, Holstege FC, Weissman JS, Keogh MC, Koller D, Shokat KM, Krogan NJ (2009) Functional organization of the S. cerevisiae phosphorylation network. Cell 136:952–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Babu M, Díaz-Mejía JJ, Vlasblom J, Gagarinova A, Phanse S, Graham C, Yousif F, Ding H, Xiong X, Nazarians-Armavil A, Alamgir M, Ali M, Pogoutse O, Pe’er A, Arnold R, Michaut M, Parkinson J, Golshani A, Whitfield C, Wodak SJ, Moreno-Hagelsieb G, Greenblatt JF, Emili A (2011) Genetic interaction maps in Escherichia coli reveal functional crosstalk among cell envelope biogenesis pathways. PLoS Genet 7:e1002377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kumar A, Beloglazova N, Bundalovic-Torma C, Phanse S, Deineko V, Gagarinova A, Musso G, Vlasblom J, Lemak S, Hooshyar M, Minic Z, Wagih O, Mosca R, Aloy P, Golshani A, Parkinson J, Emili A, Yakunin AF, Babu M (2016) Conditional epistatic interaction maps reveal global functional rewiring of genome integrity pathways in Escherichia coli. Cell Rep 14:648–661

    Article  CAS  PubMed  Google Scholar 

  38. Johnson DC, Dean DR, Smith AD, Johnson MK (2005) Structure, function, and formation of biological iron-sulfur clusters. Annu Rev Biochem 74:247–281

    Article  CAS  PubMed  Google Scholar 

  39. Boutigny S, Saini A, Baidoo EEK, Yeung N, Keasling JD, Butland G (2013) Physical and functional interactions of a monothiol glutaredoxin and an iron sulfur cluster carrier protein with the sulfur-donating radical S-adenosyl-L-methionine enzyme MiaB. J Biol Chem 288:14200–14211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Roguev A, Bandyopadhyay S, Zofall M, Zhang K, Fischer T, Collins SR, Qu H, Shales M, Park HO, Hayles J, Hoe KL, Kim DU, Ideker T, Grewal SI, Weissman JS, Krogan NJ (2008) Conservation and rewiring of functional modules revealed by an epistasis map in fission yeast. Science 322:405–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Babu M, Bundalovic-Torma C, Calmettes C, Phanse S, Zhang Q, Jiang Y, Minic Z, Kim S, Mehla J, Gagarinova A, Rodionova I, Kumar A, Guo H, Kagan O, Pogoutse O, Aoki H, Deineko V, Caufield JH, Holtzapple E, Zhang Z, Vastermark A, Pandya Y, Lai CC-L, El Bakkouri M, Hooda Y, Shah M, Burnside D, Hooshyar M, Vlasblom J, Rajagopala SV, Golshani A, Wuchty S, Greenblatt JF, Saier M, Uetz P, Moraes TF, Parkinson J, Emili A (2018) Global landscape of cell envelope protein complexes in Escherichia coli. Nat Biotechnol 36:103–112

    Article  CAS  PubMed  Google Scholar 

  42. van Opijnen T, Bodi KL, Camilli A (2009) Tn-seq: high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms. Nat Methods 6:767–772

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Depardieu F, Bikard D (2020) Gene silencing with CRISPRi in bacteria and optimization of dCas9 expression levels. Methods 172:61–75

    Article  CAS  PubMed  Google Scholar 

  44. Hu P, Janga SC, Babu M, Diaz-Mejia JJ, Butland G (2009) Global functional atlas of Escherichia coli encompassing previously uncharacterized proteins. PLoS Biol 7:e1000096

    Article  PubMed Central  CAS  Google Scholar 

  45. St Onge RP, Mani R, Oh J, Proctor M, Fung E, Davis RW, Nislow C, Roth FP, Giaever G (2007) Systematic pathway analysis using high-resolution fitness profiling of combinatorial gene deletions. Nat Genet 39:199–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Butland G, Peregrín-Alvarez JM, Li J, Yang W, Yang X, Canadien V, Starostine A, Richards D, Beattie B, Krogan N, Davey M, Parkinson J, Greenblatt J, Emili A (2005) Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 433:531–537

    Article  CAS  PubMed  Google Scholar 

  48. Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, Sevier CS, Ding H, Koh JL, Toufighi K, Mostafavi S, Prinz J, St Onge RP, VanderSluis B, Makhnevych T, Vizeacoumar FJ, Alizadeh S, Bahr S, Brost RL, Chen Y, Cokol M, Deshpande R, Li Z, Lin ZY, Liang W, Marback M, Paw J, San Luis BJ, Shuteriqi E, Tong AH, van Dyk N, Wallace IM, Whitney JA, Weirauch MT, Zhong G, Zhu H, Houry WA, Brudno M, Ragibizadeh S, Papp B, Pal C, Roth FP, Giaever G, Nislow C, Troyanskaya OG, Bussey H, Bader GD, Gingras AC, Morris QD, Kim PM, Kaiser CA, Myers CL, Andrews BJ, Boone C (2010) The genetic landscape of a cell. Science 327:425–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wagih O, Parts L (2014) Gitter: a robust and accurate method for quantification of colony sizes from plate images. G3 (Bethesda) 4:547–552

    Article  Google Scholar 

  50. Baryshnikova A, Costanzo M, Kim Y, Ding H, Koh J, Toufighi K, Youn J-Y, Ou J, San Luis B-J, Bandyopadhyay S, Hibbs M, Hess D, Gingras A-C, Bader GD, Troyanskaya OG, Brown GW, Andrews B, Boone C, Myers CL (2010) Quantitative analysis of fitness and genetic interactions in yeast on a genome scale. Nat Methods 7:1017–1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ma X, Tarone AM, Li W (2008) Mapping genetically compensatory pathways from synthetic lethal interactions in yeast. PLoS One 3:e1922

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Kanehisa M (2002) The KEGG database. Novartis Found Symp 247:91–101; discussion 101-103, 119-128, 244-152

    Article  CAS  PubMed  Google Scholar 

  53. Keseler IM, Bonavides-Martinez C, Collado-Vides J, Gama-Castro S, Gunsalus RP, Johnson DA, Krummenacker M, Nolan LM, Paley S, Paulsen IT, Peralta-Gil M, Santos-Zavaleta A, Shearer AG, Karp PD (2009) EcoCyc: a comprehensive view of Escherichia coli biology. Nucleic Acids Res 37:D464–D470

    Article  CAS  PubMed  Google Scholar 

  54. Serres MH, Riley M (2000) MultiFun, a multifunctional classification scheme for Escherichia coli K-12 gene products. Microb Comp Genomics 5:205–222

    Article  CAS  PubMed  Google Scholar 

  55. Le Meur N, Gentleman R (2008) Modeling synthetic lethality. Genome Biol 9:R135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188

    Article  Google Scholar 

  57. Saka K, Tadenuma M, Nakade S, Tanaka N, Sugawara H, Nishikawa K, Ichiyoshi N, Kitagawa M, Mori H, Ogasawara N, Nishimura A (2005) A complete set of Escherichia coli open reading frames in mobile plasmids facilitating genetic studies. DNA Res 12:63–68

    Article  CAS  PubMed  Google Scholar 

  58. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102:15545–15550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wilmes GM, Bergkessel M, Bandyopadhyay S, Shales M, Braberg H, Cagney G, Collins SR, Whitworth GB, Kress TL, Weissman JS, Ideker T, Guthrie C, Krogan NJ (2008) A genetic interaction map of RNA-processing factors reveals links between Sem1/Dss1-containing complexes and mRNA export and splicing. Mol Cell 32:735–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tong AH, Lesage G, Bader GD, Ding H, Xu H, Xin X, Young J, Berriz GF, Brost RL, Chang M, Chen Y, Cheng X, Chua G, Friesen H, Goldberg DS, Haynes J, Humphries C, He G, Hussein S, Ke L, Krogan N, Li Z, Levinson JN, Lu H, Menard P, Munyana C, Parsons AB, Ryan O, Tonikian R, Roberts T, Sdicu AM, Shapiro J, Sheikh B, Suter B, Wong SL, Zhang LV, Zhu H, Burd CG, Munro S, Sander C, Rine J, Greenblatt J, Peter M, Bretscher A, Bell G, Roth FP, Brown GW, Andrews B, Bussey H, Boone C (2004) Global mapping of the yeast genetic interaction network. Science 303:808–813

    Article  CAS  PubMed  Google Scholar 

  61. Wong SL, Zhang LV, Tong AH, Li Z, Goldberg DS, King OD, Lesage G, Vidal M, Andrews B, Bussey H, Boone C, Roth FP (2004) Combining biological networks to predict genetic interactions. Proc Natl Acad Sci U S A 101:15682–15687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kumar A, Hosseinnia A, Gagarinova A, Phanse S, Kim S, Aly KA, Zilles S, Babu M (2019) A Gaussian process-based definition reveals new and bona fide genetic interactions compared to a multiplicative model in the gram-negative Escherichia coli. Bioinformatics 36:880–889

    Google Scholar 

  63. Mani R, St Onge RP, Hartman, J. L. t., Giaever, G., and Roth, F. P. (2008) Defining genetic interaction. Proc Natl Acad Sci U S A 105:3461–3466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Oughtred R, Stark C, Breitkreutz BJ, Rust J, Boucher L, Chang C, Kolas N, O’Donnell L, Leung G, McAdam R, Zhang F, Dolma S, Willems A, Coulombe-Huntington J, Chatr-Aryamontri A, Dolinski K, Tyers M (2019) The BioGRID interaction database: 2019 update. Nucleic Acids Res 47:D529–D541

    Article  CAS  PubMed  Google Scholar 

  65. von Mering C, Jensen LJ, Kuhn M, Chaffron S, Doerks T, Kruger B, Snel B, Bork P (2007) STRING 7--recent developments in the integration and prediction of protein interactions. Nucleic Acids Res 35:D358–D362

    Article  Google Scholar 

Download references

Acknowledgments

AG is a recipient of Canadian Institute of Health Research Postdoctoral Fellowship. This work was supported by a grant from the National Sciences and Engineering Research Council of Canada to M.B (DG-20234).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alla Gagarinova or Mohan Babu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gagarinova, A., Hosseinnia, A., Babu, M. (2021). Quantitative Genetic Screens for Mapping Bacterial Pathways and Functional Networks. In: Vizeacoumar, F.J., Freywald, A. (eds) Mapping Genetic Interactions. Methods in Molecular Biology, vol 2381. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1740-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1740-3_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1739-7

  • Online ISBN: 978-1-0716-1740-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics