Skip to main content

Multi-Probe Equilibrium Analysis of Gradual (Un)Folding Processes

  • Protocol
  • First Online:
Protein Folding

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2376))

  • 1468 Accesses

Abstract

Studies of small proteins that exhibit noncooperative, gradual (un)folding can offer unique insights into the rarely accessible intermediate stages of the protein folding processes. Detailed experimental characterization of these intermediate states requires approaches that utilize multiple site-specific probes of the local structure. Isotopically edited infrared (IR) spectroscopy has emerged as a powerful methodology capable of providing such high-resolution structural information. Labeling of selected amide carbonyls with 13C results in detectable side-bands of amide I′ vibrations, which are sensitive to local conformation and/or solvent exposure without introducing any significant structural perturbation to the protein. Incorporation of isotopically labeled amino acids at specific positions can be achieved by the chemical synthesis of the studied proteins. We describe the basic procedures for synthesis of 13C isotopically edited protein samples, experimental IR spectroscopic measurements and analysis of the site-specific equilibrium thermal unfolding of a small protein from the temperature-dependent IR data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Garcia-Mira MM, Sadqi M, Fischer N, Sanchez-Ruiz JM, Muñoz V (2002) Experimental identification of downhill protein folding. Science 298:2191–2195

    Article  CAS  Google Scholar 

  2. Sadqi M, Fushman D, Muñoz V (2006) Atom-by-atom analysis of global downhill protein folding. Nature (442):317–321

    Google Scholar 

  3. Udgaonkar JB (2008) Multiple routes and structural heterogeneity in protein folding. Annu Rev Biophys 37:489–510

    Article  CAS  Google Scholar 

  4. Eaton WA (1999) Searching for “downhill scenarios” in protein folding. Proc Natl Acad Sci U S A 96:5897–5899

    Article  CAS  Google Scholar 

  5. Barth A, Zscherp C (2002) What vibrations tell us about proteins. Q Rev Biophys 35:369–430

    Article  CAS  Google Scholar 

  6. Tadesse L, Nazarbaghi R, Walters L (1991) Isotopically enhanced infrared spectroscopy: a novel method for examining secondary structure at specific sites in conformationally heterogeneous peptides. J Am Chem Soc 113:7036–7037

    Article  CAS  Google Scholar 

  7. Decatur SM (2006) Elucidation of residue-level structure and dynamics of polypeptides via isotope-edited infrared spectroscopy. Acc Chem Res 39:169–175

    Article  CAS  Google Scholar 

  8. Huang R, Kubelka J, Barber-Armstrong W, Silva RA, Decatur SM, Keiderling TA (2004) Nature of vibrational coupling in helical peptides: an isotopic labeling study. J Am Chem Soc 126:2346–2354

    Article  CAS  Google Scholar 

  9. Manas ES, Getahun Z, Wright WW, Degrado WF, Vanderkooi JM (2000) Infrared spectra of amide groups in alpha-helical proteins: evidence for hydrogen bonding between helices and water. J Am Chem Soc 122:9883–9890

    Article  CAS  Google Scholar 

  10. Walsh STR, Cheng RP, Wright WW, Alonso DOV, Daggett V, Vanderkooi JM, DeGrado WF (2003) The hydration of amides in helices; a comprehensive picture from molecular dynamics, IR, and NMR. Protein Sci 12:520–531

    Article  CAS  Google Scholar 

  11. Brewer SH, Song BB, Raleigh DP, Dyer RB (2007) Residue specific resolution of protein folding dynamics using isotope-edited infrared temperature jump spectroscopy. Biochemistry 46:3279–3285

    Article  CAS  Google Scholar 

  12. Fesinmeyer RM, Peterson ES, Dyer RB, Andersen NH (2005) Studies of helix fraying and solvation using C-13 isotopomers. Protein Sci 14:2324–2332

    Article  CAS  Google Scholar 

  13. Marecek J, Song B, Brewer S, Belyea J, Dyer RB, Raleigh DP (2007) A simple and economical method for the production of C-13, O-18-labeled FMOC-amino acids with high levels of enrichment: applications to isotope-edited IR studies of proteins. Org Lett 9:4935–4937

    Article  CAS  Google Scholar 

  14. Kubelka J, Keiderling TA (2001) The anomalous infrared amide I intensity distribution in 13C isotopically labeled peptide β-sheets comes from extended, multiple-stranded structures. An ab initio study. J Am Chem Soc 123:6142–6150

    Article  CAS  Google Scholar 

  15. Petty SA, Decatur SM (2005) Intersheet rearrangement of polypeptides during nucleation of beta-sheet aggregates. Proc Natl Acad Sci U S A 102:14272–14277

    Article  CAS  Google Scholar 

  16. Welch WRW, Kubelka J, Keiderling TA (2013) Infrared, VCD and Raman spectral simulations for β-sheet structures with various isotopic labels, inter-strand and stacking arrangements using Density Functional Theory. J Phys Chem B 117:10343–10358

    Article  CAS  Google Scholar 

  17. Welch WRW, Keiderling TA, Kubelka J (2013) Structural analyses of experimental 13C edited amide I' IR and VCD for peptide β-sheet aggregates and fibrils using DFT-based spectral simulations. J Phys Chem B 117:10359–10369

    Article  CAS  Google Scholar 

  18. Sagle LB, Zimmermann J, Dawson PE, Romesberg FE (2004) A high-resolution probe of protein folding. J Am Chem Soc 126:3384–3385

    Article  CAS  Google Scholar 

  19. Huang CY, Getahun Z, Zhu YJ, Klemke JW, DeGrado WF, Gai F (2002) Helix formation via conformation diffusion search. Proc Natl Acad Sci U S A 99:2788–2793

    Article  CAS  Google Scholar 

  20. Hauser K, Krejtschi C, Huang R, Wu L, Keiderling TA (2008) Site-specific relaxation kinetics of a tryptophan zipper hairpin peptide using temperature jump IR spectroscopy with isotopic labeling. J Am Chem Soc 130:2984–2992

    Article  CAS  Google Scholar 

  21. Amunson KE, Ackels L, Kubelka J (2008) Site-specific unfolding thermodynamics of a helix-turn-helix protein. J Am Chem Soc 130:8146–8147

    Article  CAS  Google Scholar 

  22. Kubelka GS, Kubelka J (2014) Site-specific thermodynamic stability and unfolding of a de novo designed protein structural motif mapped by C-13 isotopically edited IR spectroscopy. J Am Chem Soc 136:6037–6048

    Article  CAS  Google Scholar 

  23. Lai JK, Kubelka G, Kubelka J (2015) Sequence, structure and cooperativity in folding of elementary protein motifs. Proc Natl Acad Sci U S A 112:9890–9895

    Article  CAS  Google Scholar 

  24. Fabian H, Naumann D (2004) Methods to study protein folding by stopped-flow FT-IR. Methods 34:28–40

    Article  CAS  Google Scholar 

  25. Amunson KE, Kubelka J (2007) On the temperature dependence of amide I frequencies of peptides in solution. J Phys Chem B 111:9993–9998

    Article  CAS  Google Scholar 

  26. Ackels LA, Stawski P, Amunson KE, Kubelka J (2009) On the temperature dependence of the amide I intensities of peptides in solution. Vibr Spectrosc 50:2–9

    Article  CAS  Google Scholar 

  27. Kubelka J (2013) Multivariate analysis of spectral data with frequency shifts: application to temperature dependent infrared spectra of peptides and proteins. Anal Chem 85:9588–9595

    Article  CAS  Google Scholar 

  28. Chan WC, White PD (2000) FMOC solid phase peptide synthesis: a practical approach. Oxford University Press, Oxford, UK

    Google Scholar 

  29. Goormaghtigh E, Cabiaux V, Ruysschaert JM (1994) Determination of soluble and membrane protein structure by Fourier transform infrared spectroscopy. II. Experimental aspects, side chain structure, and H/D exchange. In: Hilderson HJ, Ralston GB (eds) Subcellular biochemistry. Plenum, New York, pp 363–403

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation (NSF) grant CAREER 0846140.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kubelka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kubelka, G.S., Kubelka, J. (2022). Multi-Probe Equilibrium Analysis of Gradual (Un)Folding Processes. In: Muñoz, V. (eds) Protein Folding. Methods in Molecular Biology, vol 2376. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1716-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1716-8_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1715-1

  • Online ISBN: 978-1-0716-1716-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics