Skip to main content

Illuminating lncRNA Function Through Target Prediction

  • Protocol
  • First Online:
Long Non-Coding RNAs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2372))

Abstract

Most of the transcribed human genome codes for noncoding RNAs (ncRNAs), and long noncoding RNAs (lncRNAs) make for the lion’s share of the human ncRNA space. Despite growing interest in lncRNAs, because there are so many of them, and because of their tissue specialization and, often, lower abundance, their catalog remains incomplete and there are multiple ongoing efforts to improve it. Consequently, the number of human lncRNA genes may be lower than 10,000 or higher than 200,000. A key open challenge for lncRNA research, now that so many lncRNA species have been identified, is the characterization of lncRNA function and the interpretation of the roles of genetic and epigenetic alterations at their loci. After all, the most important human genes to catalog and study are those that contribute to important cellular functions—that affect development or cell differentiation and whose dysregulation may play a role in the genesis and progression of human diseases. Multiple efforts have used screens based on RNA-mediated interference (RNAi), antisense oligonucleotide (ASO), and CRISPR screens to identify the consequences of lncRNA dysregulation and predict lncRNA function in select contexts, but these approaches have unresolved scalability and accuracy challenges. Instead—as was the case for better-studied ncRNAs in the past—researchers often focus on characterizing lncRNA interactions and investigating their effects on genes and pathways with known functions. Here, we focus most of our review on computational methods to identify lncRNA interactions and to predict the effects of their alterations and dysregulation on human disease pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. St Laurent G, Wahlestedt C, Kapranov P (2015) The landscape of long noncoding RNA classification. Trends Genet 31(5):239–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ma L et al (2019) LncBook: a curated knowledgebase of human long non-coding RNAs. Nucleic Acids Res 47(D1):D128–D134

    Article  CAS  PubMed  Google Scholar 

  3. Quinn JJ, Chang HY (2016) Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet 17(1):47

    Article  CAS  PubMed  Google Scholar 

  4. Yang L et al (2011) Genomewide characterization of non-polyadenylated RNAs. Genome Biol 12(2):1–14

    Article  CAS  Google Scholar 

  5. Derrien T et al (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22(9):1775–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ruiz-Orera J et al (2014) Long non-coding RNAs as a source of new peptides. elife 3:e03523

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Choi SW, Kim HW, Nam JW (2019) The small peptide world in long noncoding RNAs. Brief Bioinform 20(5):1853–1864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ji Z et al (2015) Many lncRNAs, 5'UTRs, and pseudogenes are translated and some are likely to express functional proteins. elife 4:e08890

    Article  PubMed  PubMed Central  Google Scholar 

  9. Banfai B et al (2012) Long noncoding RNAs are rarely translated in two human cell lines. Genome Res 22(9):1646–1657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ponjavic J, Ponting CP, Lunter G (2007) Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs. Genome Res 17(5):556–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Struhl K (2007) Transcriptional noise and the fidelity of initiation by RNA polymerase II. Nat Struct Mol Biol 14(2):103–105

    Article  CAS  PubMed  Google Scholar 

  12. van Bakel H et al (2010) Most “dark matter” transcripts are associated with known genes. PLoS Biol 8(5):e1000371

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Schmitt AM, Chang HY (2016) Long noncoding RNAs in cancer pathways. Cancer Cell 29(4):452–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Slack FJ, Chinnaiyan AM (2019) The role of non-coding RNAs in oncology. Cell 179(5):1033–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Perry RB, Ulitsky I (2016) The functions of long noncoding RNAs in development and stem cells. Development 143(21):3882–3894

    Article  PubMed  CAS  Google Scholar 

  16. Sarropoulos I et al (2019) Developmental dynamics of lncRNAs across mammalian organs and species. Nature 571(7766):510–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Delas MJ, Hannon GJ (2017) lncRNAs in development and disease: from functions to mechanisms. Open Biol 7(7):170121

    Google Scholar 

  18. Ng SY et al (2013) Long noncoding RNAs in development and disease of the central nervous system. Trends Genet 29(8):461–468

    Article  CAS  PubMed  Google Scholar 

  19. Iyer MK et al (2015) The landscape of long noncoding RNAs in the human transcriptome. Nat Genet 47(3):199–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hon CC et al (2017) An atlas of human long non-coding RNAs with accurate 5′ ends. Nature 543(7644):199–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cabili MN et al (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25(18):1915–1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lorenzi L et al (2019) The RNA Atlas, a single nucleotide resolution map of the human transcriptome. bioRxiv 807529

    Google Scholar 

  23. Frankish A et al (2019) GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res 47(D1):D766–D773

    Article  CAS  PubMed  Google Scholar 

  24. Fang S et al (2018) NONCODEV5: a comprehensive annotation database for long non-coding RNAs. Nucleic Acids Res 46(D1):D308–D314

    Article  CAS  PubMed  Google Scholar 

  25. Volders PJ et al (2019) LNCipedia 5: towards a reference set of human long non-coding RNAs. Nucleic Acids Res 47(D1):D135–D139

    Article  CAS  PubMed  Google Scholar 

  26. The RC et al (2017) RNAcentral: a comprehensive database of non-coding RNA sequences. Nucleic Acids Res 45(D1):D128–D134

    Article  CAS  Google Scholar 

  27. Sun Z et al (2017) UClncR: ultrafast and comprehensive long non-coding RNA detection from RNA-seq. Sci Rep 7(1):14196

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Han S et al (2016) Lncident: a tool for rapid identification of long noncoding RNAs utilizing sequence intrinsic composition and open reading frame information. Int J Genomics 2016:9185496

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Yang C et al (2018) LncADeep: an ab initio lncRNA identification and functional annotation tool based on deep learning. Bioinformatics 34(22):3825–3834

    Article  CAS  PubMed  Google Scholar 

  30. Hu L et al (2017) COME: a robust coding potential calculation tool for lncRNA identification and characterization based on multiple features. Nucleic Acids Res 45(1):e2

    Article  PubMed  CAS  Google Scholar 

  31. Achawanantakun R et al (2015) LncRNA-ID: long non-coding RNA IDentification using balanced random forests. Bioinformatics 31(24):3897–3905

    CAS  PubMed  Google Scholar 

  32. Yan X et al (2015) Comprehensive genomic characterization of long non-coding RNAs across human cancers. Cancer Cell 28(4):529–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Barretina J et al (2012) The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483(7391):603–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li J et al (2015) TANRIC: an interactive open platform to explore the function of lncRNAs in cancer. Cancer Res 75(18):3728–3737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mele M et al (2015) Human genomics. The human transcriptome across tissues and individuals. Science 348(6235):660–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jiang S et al (2019) An expanded landscape of human long noncoding RNA. Nucleic Acids Res 47(15):7842–7856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li S et al (2018) exoRBase: a database of circRNA, lncRNA and mRNA in human blood exosomes. Nucleic Acids Res 46(D1):D106–D112

    Article  CAS  PubMed  Google Scholar 

  38. Kornienko AE et al (2016) Long non-coding RNAs display higher natural expression variation than protein-coding genes in healthy humans. Genome Biol 17:14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Dianatpour A, Ghafouri-Fard S (2017) The role of long non coding RNAs in the repair of DNA double strand breaks. Int J Mol Cell Med 6(1):1–12

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen J, Liu S, Hu X (2018) Long non-coding RNAs: crucial regulators of gastrointestinal cancer cell proliferation. Cell Death Dis 4:50

    Article  CAS  Google Scholar 

  41. Wang L et al (2017) Missing links in epithelial-mesenchymal transition: long non-coding RNAs enter the arena. Cell Physiol Biochem 44(4):1665–1680

    Article  CAS  PubMed  Google Scholar 

  42. Loewer S et al (2010) Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat Genet 42(12):1113–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kanduri C (2011) Kcnq1ot1: a chromatin regulatory RNA. Semin Cell Dev Biol 22(4):343–350

    Article  CAS  PubMed  Google Scholar 

  44. Wang Z et al (2018) lncRNA epigenetic landscape analysis identifies EPIC1 as an oncogenic lncRNA that interacts with MYC and promotes cell-cycle progression in cancer. Cancer Cell 33(4):706–720.e9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Penny GD et al (1996) Requirement for Xist in X chromosome inactivation. Nature 379(6561):131–137

    Article  CAS  PubMed  Google Scholar 

  46. Sado T et al (2001) Regulation of imprinted X-chromosome inactivation in mice by Tsix. Development 128(8):1275–1286

    Article  CAS  PubMed  Google Scholar 

  47. Tian D, Sun S, Lee JT (2010) The long noncoding RNA, Jpx, is a molecular switch for X chromosome inactivation. Cell 143(3):390–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sleutels F, Zwart R, Barlow DP (2002) The non-coding air RNA is required for silencing autosomal imprinted genes. Nature 415(6873):810–813

    Article  CAS  PubMed  Google Scholar 

  49. Fitzpatrick GV, Soloway PD, Higgins MJ (2002) Regional loss of imprinting and growth deficiency in mice with a targeted deletion of KvDMR1. Nat Genet 32(3):426–431

    Article  CAS  PubMed  Google Scholar 

  50. Zhou Y et al (2010) Activation of paternally expressed genes and perinatal death caused by deletion of the Gtl2 gene. Development 137(16):2643–2652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Grote P et al (2013) The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell 24(2):206–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sauvageau M et al (2013) Multiple knockout mouse models reveal lincRNAs are required for life and brain development. elife 2:e01749

    Article  PubMed  PubMed Central  Google Scholar 

  53. Jiang W et al (2015) The lncRNA DEANR1 facilitates human endoderm differentiation by activating FOXA2 expression. Cell Rep 11(1):137–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chalei V et al (2014) The long non-coding RNA Dali is an epigenetic regulator of neural differentiation. elife 3:e04530

    Article  PubMed  PubMed Central  Google Scholar 

  55. Tsherniak A et al (2017) Defining a cancer dependency map. Cell 170(3):564–576.e16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cowley GS et al (2014) Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies. Sci Data 1:140035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. McDonald ER 3rd et al (2017) Project DRIVE: a compendium of cancer dependencies and synthetic lethal relationships uncovered by large-scale, deep RNAi screening. Cell 170(3):577–592.e10

    Article  CAS  PubMed  Google Scholar 

  58. Meyers RM et al (2017) Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells. Nat Genet 49(12):1779–1784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Behan FM et al (2019) Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens. Nature 568(7753):511–516

    Article  CAS  PubMed  Google Scholar 

  60. Lin A, Sheltzer JM (2020) Discovering and validating cancer genetic dependencies: approaches and pitfalls. Nat Rev Genet

    Google Scholar 

  61. Subramanian A et al (2017) A next generation connectivity map: l1000 platform and the first 1,000,000 profiles. Cell 171(6):1437–1452e17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ghandi M et al (2019) Next-generation characterization of the cancer cell line encyclopedia. Nature 569(7757):503–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Li H et al (2019) The landscape of cancer cell line metabolism. Nat Med 25(5):850–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nusinow DP et al (2020) Quantitative proteomics of the cancer cell line encyclopedia. Cell 180(2):387–402.e16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yard BD et al (2016) A genetic basis for the variation in the vulnerability of cancer to DNA damage. Nat Commun 7:11428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bouhaddou M et al (2016) Drug response consistency in CCLE and CGP. Nature 540(7631):E9–E10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mullenders J, Bernards R (2009) Loss-of-function genetic screens as a tool to improve the diagnosis and treatment of cancer. Oncogene 28(50):4409–4420

    Article  CAS  PubMed  Google Scholar 

  68. Huang A et al (2020) Synthetic lethality as an engine for cancer drug target discovery. Nat Rev Drug Discov 19(1):23–38

    Article  CAS  PubMed  Google Scholar 

  69. Sachdeva M et al (2015) CRISPR/Cas9: molecular tool for gene therapy to target genome and epigenome in the treatment of lung cancer. Cancer Gene Ther 22(11):509–517

    Article  CAS  PubMed  Google Scholar 

  70. Tzelepis K et al (2016) A CRISPR dropout screen identifies genetic vulnerabilities and therapeutic targets in acute myeloid leukemia. Cell Rep 17(4):1193–1205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chan DA, Giaccia AJ (2011) Harnessing synthetic lethal interactions in anticancer drug discovery. Nat Rev Drug Discov 10(5):351–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Guttman M et al (2011) lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477(7364):295–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sun L et al (2013) Long noncoding RNAs regulate adipogenesis. Proc Natl Acad Sci U S A 110(9):3387–3392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ramilowski JA et al (2020) Functional annotation of human long noncoding RNAs via molecular phenotyping. Genome Res 30(7):1060–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhu S et al (2016) Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR-Cas9 library. Nat Biotechnol 34(12):1279–1286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Liu SJ et al (2017) CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells. Science 355(6320):aah7111

    Article  PubMed  CAS  Google Scholar 

  77. Joung J et al (2017) Genome-scale activation screen identifies a lncRNA locus regulating a gene neighbourhood. Nature 548(7667):343–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Widakowich C et al (2007) Review: side effects of approved molecular targeted therapies in solid cancers. Oncologist 12(12):1443–1455

    Article  CAS  PubMed  Google Scholar 

  79. Liu S, Kurzrock R (2014) Toxicity of targeted therapy: implications for response and impact of genetic polymorphisms. Cancer Treat Rev 40(7):883–891

    Article  CAS  PubMed  Google Scholar 

  80. Falzone L, Salomone S, Libra M (2018) Evolution of cancer pharmacological treatments at the turn of the third millennium. Front Pharmacol 9:1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Schirrmacher V (2019) From chemotherapy to biological therapy: a review of novel concepts to reduce the side effects of systemic cancer treatment (Review). Int J Oncol 54(2):407–419

    CAS  PubMed  Google Scholar 

  82. Bester AC et al (2018) An integrated genome-wide CRISPRa approach to functionalize lncRNAs in drug resistance. Cell 173(3):649–664.e20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Liu SJ et al (2020) CRISPRi-based radiation modifier screen identifies long non-coding RNA therapeutic targets in glioma. Genome Biol 21(1):83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Goff LA, Rinn JL (2015) Linking RNA biology to lncRNAs. Genome Res 25(10):1456–1465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gao F et al (2020) Reverse-genetics studies of lncRNAs-what we have learnt and paths forward. Genome Biol 21(1):93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Esposito R et al (2019) Hacking the cancer genome: profiling therapeutically actionable long non-coding RNAs using CRISPR-Cas9 screening. Cancer Cell 35(4):545–557

    Article  CAS  PubMed  Google Scholar 

  87. Chu C et al (2011) Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol Cell 44(4):667–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chu C, Quinn J, Chang HY (2012) Chromatin isolation by RNA purification (ChIRP). J Vis Exp (61):3912

    Google Scholar 

  89. Simon MD et al (2011) The genomic binding sites of a noncoding RNA. Proc Natl Acad Sci U S A 108(51):20497–20502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bell JC et al (2018) Chromatin-associated RNA sequencing (ChAR-seq) maps genome-wide RNA-to-DNA contacts. elife 7:e27024

    Article  PubMed  PubMed Central  Google Scholar 

  91. Li X et al (2017) GRID-seq reveals the global RNA-chromatin interactome. Nat Biotechnol 35(10):940–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhou B et al (2019) GRID-seq for comprehensive analysis of global RNA-chromatin interactions. Nat Protoc 14(7):2036–2068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tay Y, Rinn J, Pandolfi PP (2014) The multilayered complexity of ceRNA crosstalk and competition. Nature 505(7483):344–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bosson AD, Zamudio JR, Sharp PA (2014) Endogenous miRNA and target concentrations determine susceptibility to potential ceRNA competition. Mol Cell 56(3):347–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ebert MS, Sharp PA (2012) Roles for microRNAs in conferring robustness to biological processes. Cell 149(3):515–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Salmena L et al (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146(3):353–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Karreth FA, Tay Y, Pandolfi PP (2014) Target competition: transcription factors enter the limelight. Genome Biol 15(4):114

    Article  PubMed  PubMed Central  Google Scholar 

  98. Sumazin P et al (2011) An extensive microRNA-mediated network of RNA-RNA interactions regulates established oncogenic pathways in glioblastoma. Cell 147(2):370–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Karreth FA et al (2011) In vivo identification of tumor- suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell 147(2):382–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Tay Y et al (2011) Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell 147(2):344–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Chiu HS et al (2018) The number of titrated microRNA species dictates ceRNA regulation. Nucleic Acids Res 46(9):4354–4369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Chiu HS et al (2017) High-throughput validation of ceRNA regulatory networks. BMC Genomics 18(1):418

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Chiu HS et al (2015) Cupid: simultaneous reconstruction of microRNA-target and ceRNA networks. Genome Res 25(2):257–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Cesana M et al (2011) A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147(2):358–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hansen TB et al (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495(7441):384–388

    Article  CAS  PubMed  Google Scholar 

  106. Kallen AN et al (2013) The imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol Cell 52(1):101–112

    Article  CAS  PubMed  Google Scholar 

  107. Wang P et al (2014) The STAT3-binding long noncoding RNA lnc-DC controls human dendritic cell differentiation. Science 344(6181):310–313

    Article  CAS  PubMed  Google Scholar 

  108. Wang Y et al (2013) Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. Dev Cell 25(1):69–80

    Article  CAS  PubMed  Google Scholar 

  109. Yan B et al (2015) lncRNA-MIAT regulates microvascular dysfunction by functioning as a competing endogenous RNA. Circ Res 116(7):1143–1156

    Article  CAS  PubMed  Google Scholar 

  110. Johnson DS et al (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science 316(5830):1497–1502

    Article  CAS  PubMed  Google Scholar 

  111. Chi SW et al (2009) Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460(7254):479–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Konig J et al (2010) iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat Struct Mol Biol 17(7):909–915

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Van Nostrand EL et al (2016) Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP). Nat Methods 13(6):508–514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Kargapolova Y et al (2017) sCLIP-an integrated platform to study RNA-protein interactomes in biomedical research: identification of CSTF2tau in alternative processing of small nuclear RNAs. Nucleic Acids Res 45(10):6074–6086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hafner M et al (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141(1):129–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhao J et al (2008) Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322(5902):750–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zhao J et al (2010) Genome-wide identification of polycomb-associated RNAs by RIP-seq. Mol Cell 40(6):939–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Van Nostrand EL et al (2020) Principles of RNA processing from analysis of enhanced CLIP maps for 150 RNA binding proteins. Genome Biol 21(1):90

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Yang EW et al (2019) Allele-specific binding of RNA-binding proteins reveals functional genetic variants in the RNA. Nat Commun 10(1):1338

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Feng H et al (2019) Modeling RNA-binding protein specificity in vivo by precisely registering protein-RNA crosslink sites. Mol Cell 74(6):1189–1204.e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Helwak A et al (2013) Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153(3):654–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Nguyen TC et al (2016) Mapping RNA-RNA interactome and RNA structure in vivo by MARIO. Nat Commun 7:12023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Aw JG et al (2016) In vivo mapping of eukaryotic RNA interactomes reveals principles of higher-order organization and regulation. Mol Cell 62(4):603–617

    Article  CAS  PubMed  Google Scholar 

  124. Nguyen TC et al (2018) RNA, action through interactions. Trends Genet 34(11):867–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ferre F, Colantoni A, Helmer-Citterich M (2016) Revealing protein-lncRNA interaction. Brief Bioinform 17(1):106–116

    Article  CAS  PubMed  Google Scholar 

  126. Machyna M, Simon MD (2018) Catching RNAs on chromatin using hybridization capture methods. Brief Funct Genomics 17(2):96–103

    Article  CAS  PubMed  Google Scholar 

  127. Martin G, Zavolan M (2016) Redesigning CLIP for efficiency, accuracy and speed. Nat Methods 13(6):482–483

    Article  CAS  PubMed  Google Scholar 

  128. Zhu Y et al (2019) POSTAR2: deciphering the post-transcriptional regulatory logics. Nucleic Acids Res 47(D1):D203–D211

    Article  CAS  PubMed  Google Scholar 

  129. Yang YC et al (2015) CLIPdb: a CLIP-seq database for protein-RNA interactions. BMC Genomics 16:51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Li JH et al (2014) starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 42(Database issue):D92–D97

    Article  CAS  PubMed  Google Scholar 

  131. Blin K et al (2015) DoRiNA 2.0—upgrading the doRiNA database of RNA interactions in post-transcriptional regulation. Nucleic Acids Res 43(Database issue):D160–D167

    Article  CAS  PubMed  Google Scholar 

  132. Landt SG et al (2012) ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res 22(9):1813–1831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Consortium EP (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414):57–74

    Article  CAS  Google Scholar 

  134. Clough E, Barrett T (2016) The gene expression omnibus database. Methods Mol Biol 1418:93–110

    Article  PubMed  PubMed Central  Google Scholar 

  135. Yu F et al (2018) LnChrom: a resource of experimentally validated lncRNA-chromatin interactions in human and mouse. Database (Oxford) 2018:bay039

    Article  Google Scholar 

  136. Teng X et al (2020) NPInter v4.0: an integrated database of ncRNA interactions. Nucleic Acids Res 48(D1):D160–D165

    CAS  PubMed  Google Scholar 

  137. Lin Y et al (2020) RNAInter in 2020: RNA interactome repository with increased coverage and annotation. Nucleic Acids Res 48(D1):D189–D197

    Article  CAS  PubMed  Google Scholar 

  138. Li Y, Syed J, Sugiyama H (2016) RNA-DNA triplex formation by long noncoding RNAs. Cell Chem Biol 23(11):1325–1333

    Article  CAS  PubMed  Google Scholar 

  139. Geisler S, Coller J (2013) RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts. Nat Rev Mol Cell Biol 14(11):699–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Buske FA, Mattick JS, Bailey TL (2011) Potential in vivo roles of nucleic acid triple-helices. RNA Biol 8(3):427–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Vance KW, Ponting CP (2014) Transcriptional regulatory functions of nuclear long noncoding RNAs. Trends Genet 30(8):348–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Senturk Cetin N et al (2019) Isolation and genome-wide characterization of cellular DNA:RNA triplex structures. Nucleic Acids Res 47(5):2306–2321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Mondal T et al (2015) MEG3 long noncoding RNA regulates the TGF-beta pathway genes through formation of RNA-DNA triplex structures. Nat Commun 6:7743

    Article  CAS  PubMed  Google Scholar 

  144. Grote P, Herrmann BG (2013) The long non-coding RNA Fendrr links epigenetic control mechanisms to gene regulatory networks in mammalian embryogenesis. RNA Biol 10(10):1579–1585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Liu H et al (2019) TERC promotes cellular inflammatory response independent of telomerase. Nucleic Acids Res 47(15):8084–8095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kalwa M et al (2016) The lncRNA HOTAIR impacts on mesenchymal stem cells via triple helix formation. Nucleic Acids Res 44(22):10631–10643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Buske FA et al (2012) Triplexator: detecting nucleic acid triple helices in genomic and transcriptomic data. Genome Res 22(7):1372–1381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Buske FA et al (2013) Triplex-Inspector: an analysis tool for triplex-mediated targeting of genomic loci. Bioinformatics 29(15):1895–1897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Kuo CC et al (2019) Detection of RNA-DNA binding sites in long noncoding RNAs. Nucleic Acids Res 47(6):e32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. He S et al (2015) LongTarget: a tool to predict lncRNA DNA-binding motifs and binding sites via Hoogsteen base-pairing analysis. Bioinformatics 31(2):178–186

    Article  CAS  PubMed  Google Scholar 

  151. Lexa M et al (2011) A dynamic programming algorithm for identification of triplex-forming sequences. Bioinformatics 27(18):2510–2517

    Article  CAS  PubMed  Google Scholar 

  152. Hon J et al (2013) Triplex: an R/Bioconductor package for identification and visualization of potential intramolecular triplex patterns in DNA sequences. Bioinformatics 29(15):1900–1901

    Article  CAS  PubMed  Google Scholar 

  153. Jenjaroenpun P et al (2015) The TTSMI database: a catalog of triplex target DNA sites associated with genes and regulatory elements in the human genome. Nucleic Acids Res 43(Database issue):D110–D116

    Article  CAS  PubMed  Google Scholar 

  154. Jenjaroenpun P, Kuznetsov VA (2009) TTS mapping: integrative WEB tool for analysis of triplex formation target DNA sequences, G-quadruplets and non-protein coding regulatory DNA elements in the human genome. BMC Genomics 10(Suppl 3):S9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Soibam B (2017) Super-lncRNAs: identification of lncRNAs that target super-enhancers via RNA:DNA:DNA triplex formation. RNA 23(11):1729–1742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Chiu HS et al (2018) Pan-cancer analysis of lncRNA regulation supports their targeting of cancer genes in each tumor context. Cell Rep 23(1):297–312.e12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Li Y et al (2018) LncMAP: pan-cancer atlas of long noncoding RNA-mediated transcriptional network perturbations. Nucleic Acids Res 46(3):1113–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Li Y et al (2016) Identification and characterization of lncRNA mediated transcriptional dysregulation dictates lncRNA roles in glioblastoma. Oncotarget 7(29):45027–45041

    Article  PubMed  PubMed Central  Google Scholar 

  159. Liu Z, Dai J, Shen H (2018) Systematic analysis reveals long noncoding RNAs regulating neighboring transcription factors in human cancers. Biochim Biophys Acta Mol basis Dis 1864(9 Pt B):2785–2792

    Article  CAS  PubMed  Google Scholar 

  160. Lu SJ et al (2019) Identification of lncRNAs-gene interactions in transcription regulation based on co-expression analysis of RNA-seq data. Math Biosci Eng 16(6):7112–7125

    Article  PubMed  Google Scholar 

  161. Wang F et al (2018) Deep learning identifies genome-wide DNA binding sites of long noncoding RNAs. RNA Biol 15(12):1468–1476

    Article  PubMed  PubMed Central  Google Scholar 

  162. Altschul SF et al (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  CAS  PubMed  Google Scholar 

  163. Pott S, Lieb JD (2015) What are super-enhancers? Nat Genet 47(1):8–12

    Article  CAS  PubMed  Google Scholar 

  164. Alvarez-Dominguez JR, Lodish HF (2017) Emerging mechanisms of long noncoding RNA function during normal and malignant hematopoiesis. Blood 130(18):1965–1975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Jones AN, Sattler M (2019) Challenges and perspectives for structural biology of lncRNAs-the example of the Xist lncRNA A-repeats. J Mol Cell Biol 11(10):845–859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Mas-Ponte D et al (2017) LncATLAS database for subcellular localization of long noncoding RNAs. RNA 23(7):1080–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Mohammad F et al (2010) Kcnq1ot1 noncoding RNA mediates transcriptional gene silencing by interacting with Dnmt1. Development 137(15):2493–2499

    Article  CAS  PubMed  Google Scholar 

  168. Székely GJ, Rizzo ML, Bakirov NK (2007) Measuring and testing dependence by correlation of distances. Ann Stat 35(6):2769–2794

    Article  Google Scholar 

  169. Anastasiadou E, Jacob LS, Slack FJ (2018) Non-coding RNA networks in cancer. Nat Rev Cancer 18(1):5–18

    Article  CAS  PubMed  Google Scholar 

  170. Marchese FP, Raimondi I, Huarte M (2017) The multidimensional mechanisms of long noncoding RNA function. Genome Biol 18(1):206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Zhang Y, Tao Y, Liao Q (2018) Long noncoding RNA: a crosslink in biological regulatory network. Brief Bioinform 19(5):930–945

    Article  CAS  PubMed  Google Scholar 

  172. Franco-Zorrilla JM et al (2007) Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 39(8):1033–1037

    Article  CAS  PubMed  Google Scholar 

  173. Thomson DW, Dinger ME (2016) Endogenous microRNA sponges: evidence and controversy. Nat Rev Genet 17(5):272–283

    Article  CAS  PubMed  Google Scholar 

  174. Karreth FA, Pandolfi PP (2013) ceRNA cross-talk in cancer: when ce-bling rivalries go awry. Cancer Discov 3(10):1113–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Bosia C, Pagnani A, Zecchina R (2013) Modelling competing endogenous RNA networks. PLoS One 8(6):e66609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Furio-Tari P et al (2016) spongeScan: a web for detecting microRNA binding elements in lncRNA sequences. Nucleic Acids Res 44(W1):W176–W180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Paraskevopoulou MD et al (2016) DIANA-LncBase v2: indexing microRNA targets on non-coding transcripts. Nucleic Acids Res 44(D1):D231–D238

    Article  CAS  PubMed  Google Scholar 

  178. Das S et al (2014) lnCeDB: database of human long noncoding RNA acting as competing endogenous RNA. PLoS One 9(6):e98965

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Tan JY et al (2015) Extensive microRNA-mediated crosstalk between lncRNAs and mRNAs in mouse embryonic stem cells. Genome Res 25(5):655–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Ergun S, Oztuzcu S (2015) Oncocers: ceRNA-mediated cross-talk by sponging miRNAs in oncogenic pathways. Tumour Biol 36(5):3129–3136

    Article  CAS  PubMed  Google Scholar 

  181. Rashid F, Shah A, Shan G (2016) Long non-coding RNAs in the cytoplasm. Genom Proteom Bioinformatics 14(2):73–80

    Article  Google Scholar 

  182. Peng W et al (2015) Long non-coding RNA MEG3 functions as a competing endogenous RNA to regulate gastric cancer progression. J Exp Clin Cancer Res 34:79

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Wang WT et al (2016) LncRNAs H19 and HULC, activated by oxidative stress, promote cell migration and invasion in cholangiocarcinoma through a ceRNA manner. J Hematol Oncol 9(1):117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Tan J et al (2015) Double-negative feedback loop between long non-coding RNA TUG1 and miR-145 promotes epithelial to mesenchymal transition and radioresistance in human bladder cancer cells. FEBS Lett 589(20 Pt B):3175–3181

    Article  CAS  PubMed  Google Scholar 

  185. Memczak S et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441):333–338

    Article  CAS  PubMed  Google Scholar 

  186. Liu X et al (2018) PIWIL3/OIP5-AS1/miR-367-3p/CEBPA feedback loop regulates the biological behavior of glioma cells. Theranostics 8(4):1084–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Zhang J et al (2019) LncRNA OIP5-AS1 promotes the proliferation of hemangioma vascular endothelial cells via regulating miR-195-5p/NOB1 axis. Front Pharmacol 10:449

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Wu XS et al (2017) LncRNA-PAGBC acts as a microRNA sponge and promotes gallbladder tumorigenesis. EMBO Rep 18(10):1837–1853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Cong Z et al (2019) Long non-coding RNA linc00665 promotes lung adenocarcinoma progression and functions as ceRNA to regulate AKR1B10-ERK signaling by sponging miR-98. Cell Death Dis 10(2):84

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Yu Y et al (2020) lncRNA UCA1 functions as a ceRNA to promote prostate cancer progression via sponging miR143. Mol Ther Nucleic Acids 19:751–758

    Article  CAS  PubMed  Google Scholar 

  191. Conte F et al (2017) Role of the long non-coding RNA PVT1 in the dysregulation of the ceRNA-ceRNA network in human breast cancer. PLoS One 12(2):e0171661

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Guo G et al (2015) A long noncoding RNA critically regulates Bcr-Abl-mediated cellular transformation by acting as a competitive endogenous RNA. Oncogene 34(14):1768–1779

    Article  CAS  PubMed  Google Scholar 

  193. Ma MZ et al (2015) Long non-coding RNA CCAT1 promotes gallbladder cancer development via negative modulation of miRNA-218-5p. Cell Death Dis 6:e1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Kim J et al (2016) LncRNA OIP5-AS1/cyrano sponges RNA-binding protein HuR. Nucleic Acids Res 44(5):2378–2392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Lee S et al (2016) Noncoding RNA NORAD regulates genomic stability by sequestering PUMILIO proteins. Cell 164(1-2):69–80

    Article  CAS  PubMed  Google Scholar 

  196. Wang Y et al (2016) The emerging function and mechanism of ceRNAs in cancer. Trends Genet 32(4):211–224

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Yuan Y et al (2015) Model-guided quantitative analysis of microRNA-mediated regulation on competing endogenous RNAs using a synthetic gene circuit. Proc Natl Acad Sci U S A 112(10):3158–3163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Figliuzzi M, Marinari E, De Martino A (2013) MicroRNAs as a selective channel of communication between competing RNAs: a steady-state theory. Biophys J 104(5):1203–1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Denzler R et al (2016) Impact of MicroRNA levels, target-site complementarity, and cooperativity on competing endogenous RNA-regulated gene expression. Mol Cell 64(3):565–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Jens M, Rajewsky N (2015) Competition between target sites of regulators shapes post-transcriptional gene regulation. Nat Rev Genet 16(2):113–126

    Article  CAS  PubMed  Google Scholar 

  201. Denzler R et al (2014) Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. Mol Cell 54(5):766–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Ala U et al (2013) Integrated transcriptional and competitive endogenous RNA networks are cross-regulated in permissive molecular environments. Proc Natl Acad Sci U S A 110(18):7154–7159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Figliuzzi M, De Martino A, Marinari E (2014) RNA-based regulation: dynamics and response to perturbations of competing RNAs. Biophys J 107(4):1011–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Karreth FA et al (2015) The BRAF pseudogene functions as a competitive endogenous RNA and induces lymphoma in vivo. Cell 161(2):319–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Miotto M, Marinari E, De Martino A (2019) Competing endogenous RNA crosstalk at system level. PLoS Comput Biol 15(11):e1007474

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Nitzan M et al (2014) Interactions between distant ceRNAs in regulatory networks. Biophys J 106(10):2254–2266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Sarver AL, Subramanian S (2012) Competing endogenous RNA database. Bioinformation 8(15):731–733

    Article  PubMed  PubMed Central  Google Scholar 

  208. Chiu YC et al (2015) Parameter optimization for constructing competing endogenous RNA regulatory network in glioblastoma multiforme and other cancers. BMC Genomics 16(Suppl 4):S1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Zhou X, Liu J, Wang W (2014) Construction and investigation of breast-cancer-specific ceRNA network based on the mRNA and miRNA expression data. IET Syst Biol 8(3):96–103

    Article  PubMed  PubMed Central  Google Scholar 

  210. Song C et al (2017) The global view of mRNA-related ceRNA cross-talks across cardiovascular diseases. Sci Rep 7(1):10185

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  211. Feng C et al (2019) ce-Subpathway: identification of ceRNA-mediated subpathways via joint power of ceRNAs and pathway topologies. J Cell Mol Med 23(2):967–984

    Article  CAS  PubMed  Google Scholar 

  212. Du Z et al (2016) Integrative analyses reveal a long noncoding RNA-mediated sponge regulatory network in prostate cancer. Nat Commun 7(1):1–10

    Google Scholar 

  213. Lin Z et al (2017) Construction of competitive endogenous RNA network reveals regulatory role of long non-coding RNAs in type 2 diabetes mellitus. J Cell Mol Med 21(12):3204–3213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Maathuis MH et al (2010) Predicting causal effects in large-scale systems from observational data. Nat Methods 7(4):247–248

    Article  CAS  PubMed  Google Scholar 

  215. Zhang J et al (2018) LncmiRSRN: identification and analysis of long non-coding RNA related miRNA sponge regulatory network in human cancer. Bioinformatics 34(24):4232–4240

    Article  CAS  PubMed  Google Scholar 

  216. Tong Y, Ru B, Zhang J (2018) miRNACancerMAP: an integrative web server inferring miRNA regulation network for cancer. Bioinformatics 34(18):3211–3213

    Article  CAS  PubMed  Google Scholar 

  217. Shi X et al (2016) Subpathway-LNCE: identify dysfunctional subpathways competitively regulated by lncRNAs through integrating lncRNA-mRNA expression profile and pathway topologies. Oncotarget 7(43):69857–69870

    Article  PubMed  PubMed Central  Google Scholar 

  218. Ghosal S et al (2014) HumanViCe: host ceRNA network in virus infected cells in human. Front Genet 5:249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  219. Zheng LL et al (2018) dreamBase: DNA modification, RNA regulation and protein binding of expressed pseudogenes in human health and disease. Nucleic Acids Res 46(D1):D85–D91

    Article  CAS  PubMed  Google Scholar 

  220. Hornakova A et al (2018) JAMI: fast computation of conditional mutual information for ceRNA network analysis. Bioinformatics 34(17):3050–3051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Zhang M et al (2020) CeRNASeek: an R package for identification and analysis of ceRNA regulation. Brief Bioinform

    Google Scholar 

  222. Zhang J et al (2019) miRspongeR: an R/Bioconductor package for the identification and analysis of miRNA sponge interaction networks and modules. BMC Bioinformatics 20(1):235

    Article  PubMed  PubMed Central  Google Scholar 

  223. Miranda KC et al (2006) A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126(6):1203–1217

    Article  CAS  PubMed  Google Scholar 

  224. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20

    Article  CAS  PubMed  Google Scholar 

  225. Enright AJ et al (2003) MicroRNA targets in Drosophila. Genome Biol 5(1):R1

    Article  PubMed  PubMed Central  Google Scholar 

  226. Kertesz M et al (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39(10):1278–1284

    Article  CAS  PubMed  Google Scholar 

  227. Siepel A et al (2005) Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res 15(8):1034–1050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Kim HC, Pang S, Je HM, Kim D, Bang SY (2002) Support vector machine ensemble with bagging. In International Workshop on Support Vector Machines (pp. 397–408). Springer, Berlin, Heidelberg

    Google Scholar 

  229. Chang C-C, Lin C-J (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2(3):1–27

    Article  Google Scholar 

  230. Wang K et al (2009) Genome-wide identification of post-translational modulators of transcription factor activity in human B cells. Nat Biotechnol 27(9):829–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Pearce SC (1992) Introduction to Fisher (1925) statistical methods for research workers. In: Kotz S, Johnson NL (eds) Breakthroughs in statistics. Springer, pp 59–65

    Chapter  Google Scholar 

  232. Li Y et al (2019) Systematic review of computational methods for identifying miRNA-mediated RNA-RNA crosstalk. Brief Bioinform 20(4):1193–1204

    Article  CAS  PubMed  Google Scholar 

  233. Le TD et al (2017) Computational methods for identifying miRNA sponge interactions. Brief Bioinform 18(4):577–590

    CAS  PubMed  Google Scholar 

  234. Sardina DS et al (2017) A novel computational method for inferring competing endogenous interactions. Brief Bioinform 18(6):1071–1081

    CAS  PubMed  Google Scholar 

  235. Brown MB (1975) 400: a method for combining non-independent, one-sided tests of significance. Biometrics 31(4):987–992

    Article  Google Scholar 

  236. Kukurba KR, Montgomery SB (2015) RNA sequencing and analysis. Cold Spring Harb Protoc 2015(11):951–969

    Article  PubMed  PubMed Central  Google Scholar 

  237. Gaidatzis D et al (2015) Analysis of intronic and exonic reads in RNA-seq data characterizes transcriptional and post-transcriptional regulation. Nat Biotechnol 33(7):722–729

    Article  CAS  PubMed  Google Scholar 

  238. Alkallas R et al (2017) Inference of RNA decay rate from transcriptional profiling highlights the regulatory programs of Alzheimer’s disease. Nat Commun 8(1):909

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  239. Pillman KA et al (2019) Extensive transcriptional responses are co-ordinated by microRNAs as revealed by Exon-Intron Split Analysis (EISA). Nucleic Acids Res 47(16):8606–8619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30(7):923–930

    Article  CAS  PubMed  Google Scholar 

  241. Proudfoot NJ, Furger A, Dye MJ (2002) Integrating mRNA processing with transcription. Cell 108(4):501–512

    Article  CAS  PubMed  Google Scholar 

  242. Lee Y, Rio DC (2015) Mechanisms and regulation of alternative pre-mRNA splicing. Annu Rev Biochem 84:291–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Chorev M, Carmel L (2012) The function of introns. Front Genet 3:55

    Article  PubMed  PubMed Central  Google Scholar 

  244. Elowitz MB et al (2002) Stochastic gene expression in a single cell. Science 297(5584):1183–1186

    Article  CAS  PubMed  Google Scholar 

  245. Swain PS, Elowitz MB, Siggia ED (2002) Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc Natl Acad Sci U S A 99(20):12795–12800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Singh A, Soltani M (2013) Quantifying intrinsic and extrinsic variability in stochastic gene expression models. PLoS One 8(12):e84301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  247. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  248. Carlevaro-Fita J et al (2020) Cancer LncRNA census reveals evidence for deep functional conservation of long noncoding RNAs in tumorigenesis. Commun Biol 3(1):56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Leucci E et al (2016) Melanoma addiction to the long non-coding RNA SAMMSON. Nature 531(7595):518–522

    Article  CAS  PubMed  Google Scholar 

  250. Gutschner T, Hammerle M, Diederichs S (2013) MALAT1—a paradigm for long noncoding RNA function in cancer. J Mol Med 91(7):791–801

    Article  CAS  PubMed  Google Scholar 

  251. Zhou Y, Zhang X, Klibanski A (2012) MEG3 noncoding RNA: a tumor suppressor. J Mol Endocrinol 48(3):R45–R53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Chureau C et al (2011) Ftx is a non-coding RNA which affects Xist expression and chromatin structure within the X-inactivation center region. Hum Mol Genet 20(4):705–718

    Article  CAS  PubMed  Google Scholar 

  253. Tseng YY et al (2014) PVT1 dependence in cancer with MYC copy-number increase. Nature 512(7512):82–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Engreitz JM et al (2013) The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 341(6147):1237973

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  255. Clemson CM et al (2009) An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol Cell 33(6):717–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Askarian-Amiri ME et al (2011) SNORD-host RNA Zfas1 is a regulator of mammary development and a potential marker for breast cancer. RNA 17(5):878–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Gupta RA et al (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464(7291):1071–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Lu J, Clark AG (2012) Impact of microRNA regulation on variation in human gene expression. Genome Res 22(7):1243–1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Jonas K, Calin GA, Pichler M (2020) RNA-binding proteins as important regulators of long non-coding RNAs in cancer. Int J Mol Sci 21(8):2969

    Article  CAS  PubMed Central  Google Scholar 

  260. Yoon JH et al (2014) PAR-CLIP analysis uncovers AUF1 impact on target RNA fate and genome integrity. Nat Commun 5:5248

    Article  CAS  PubMed  Google Scholar 

  261. Noh JH et al (2016) HuR and GRSF1 modulate the nuclear export and mitochondrial localization of the lncRNA RMRP. Genes Dev 30(10):1224–1239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Djebali S et al (2012) Landscape of transcription in human cells. Nature 489(7414):101–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. van Heesch S et al (2014) Extensive localization of long noncoding RNAs to the cytosol and mono- and polyribosomal complexes. Genome Biol 15(1):R6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  264. Alessio E et al (2019) Single cell analysis reveals the involvement of the long non-coding RNA Pvt1 in the modulation of muscle atrophy and mitochondrial network. Nucleic Acids Res 47(4):1653–1670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Bashirullah A, Cooperstock RL, Lipshitz HD (1998) RNA localization in development. Annu Rev Biochem 67:335–394

    Article  CAS  PubMed  Google Scholar 

  266. Wang ET et al (2016) Dysregulation of mRNA localization and translation in genetic disease. J Neurosci 36(45):11418–11426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Zappulo A et al (2017) RNA localization is a key determinant of neurite-enriched proteome. Nat Commun 8(1):583

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  268. Bovaird S et al (2018) Biological functions, regulatory mechanisms, and disease relevance of RNA localization pathways. FEBS Lett 592(17):2948–2972

    Article  CAS  PubMed  Google Scholar 

  269. Chen LL (2016) Linking long noncoding RNA localization and function. Trends Biochem Sci 41(9):761–772

    Article  CAS  PubMed  Google Scholar 

  270. Carlevaro-Fita J, Johnson R (2019) Global positioning system: understanding long noncoding RNAs through subcellular localization. Mol Cell 73(5):869–883

    Article  CAS  PubMed  Google Scholar 

  271. Fazal FM et al (2019) Atlas of subcellular RNA localization revealed by APEX-Seq. Cell 178(2):473–490.e26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Cabili MN et al (2015) Localization and abundance analysis of human lncRNAs at single-cell and single-molecule resolution. Genome Biol 16:20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  273. Wen X et al (2018) lncSLdb: a resource for long non-coding RNA subcellular localization. Database 2018:1–6

    Article  PubMed  CAS  Google Scholar 

  274. Zhang T et al (2017) RNALocate: a resource for RNA subcellular localizations. Nucleic Acids Res 45(D1):D135–D138

    CAS  PubMed  Google Scholar 

  275. Wu KE et al (2020) RNA-GPS predicts high-resolution RNA subcellular localization and highlights the role of splicing. RNA 26(7):851–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Yan Z, Lecuyer E, Blanchette M (2019) Prediction of mRNA subcellular localization using deep recurrent neural networks. Bioinformatics 35(14):i333–i342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Zhang ZY et al (2020) Design powerful predictor for mRNA subcellular location prediction in Homo sapiens. Brief Bioinform 22:526–535

    Article  Google Scholar 

  278. Garg A et al (2020) mRNALoc: a novel machine-learning based in-silico tool to predict mRNA subcellular localization. Nucleic Acids Res 48(W1):W239–W243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Cao Z et al (2018) The lncLocator: a subcellular localization predictor for long non-coding RNAs based on a stacked ensemble classifier. Bioinformatics 34(13):2185–2194

    Article  CAS  PubMed  Google Scholar 

  280. Gudenas BL, Wang L (2018) Prediction of LncRNA subcellular localization with deep learning from sequence features. Sci Rep 8(1):16385

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  281. Su ZD et al (2018) iLoc-lncRNA: predict the subcellular location of lncRNAs by incorporating octamer composition into general PseKNC. Bioinformatics 34(24):4196–4204

    Article  CAS  PubMed  Google Scholar 

  282. Ahmad A, Lin H, Shatabda S (2020) Locate-R: Subcellular localization of long non-coding RNAs using nucleotide compositions. Genomics 112(3):2583–2589

    Article  CAS  PubMed  Google Scholar 

  283. Zuckerman B, Ulitsky I (2019) Predictive models of subcellular localization of long RNAs. RNA 25(5):557–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Jansen RP (2001) mRNA localization: message on the move. Nat Rev Mol Cell Biol 2(4):247–256

    Article  CAS  PubMed  Google Scholar 

  285. Middleton SA, Eberwine J, Kim J (2019) Comprehensive catalog of dendritically localized mRNA isoforms from sub-cellular sequencing of single mouse neurons. BMC Biol 17(1):5

    Article  PubMed  PubMed Central  Google Scholar 

  286. You BH, Yoon SH, Nam JW (2017) High-confidence coding and noncoding transcriptome maps. Genome Res 27(6):1050–1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Lennox KA, Behlke MA (2016) Cellular localization of long non-coding RNAs affects silencing by RNAi more than by antisense oligonucleotides. Nucleic Acids Res 44(2):863–877

    Article  CAS  PubMed  Google Scholar 

  288. Ulitsky I, Bartel DP (2013) lincRNAs: genomics, evolution, and mechanisms. Cell 154(1):26–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Miao H et al (2019) A long noncoding RNA distributed in both nucleus and cytoplasm operates in the PYCARD-regulated apoptosis by coordinating the epigenetic and translational regulation. PLoS Genet 15(5):e1008144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Khatri P, Sirota M, Butte AJ (2012) Ten years of pathway analysis: current approaches and outstanding challenges. PLoS Comput Biol 8(2):e1002375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Garcia-Campos MA, Espinal-Enriquez J, Hernandez-Lemus E (2015) Pathway analysis: state of the art. Front Physiol 6:383

    Article  PubMed  PubMed Central  Google Scholar 

  292. Sun M et al (2015) Discovery, annotation, and functional analysis of long noncoding RNAs controlling cell-cycle gene expression and proliferation in breast cancer cells. Mol Cell 59(4):698–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Fernando TR et al (2017) The lncRNA CASC15 regulates SOX4 expression in RUNX1-rearranged acute leukemia. Mol Cancer 16(1):126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  294. Kajino T et al (2019) Divergent lncRNA MYMLR regulates MYC by eliciting DNA looping and promoter-enhancer interaction. EMBO J 38(17):e98441

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  295. de Lima DS et al (2019) Long noncoding RNAs are involved in multiple immunological pathways in response to vaccination. Proc Natl Acad Sci U S A 116(34):17121–17126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  296. Park SM et al (2018) The LncRNA EPEL promotes lung cancer cell proliferation through E2F target activation. Cell Physiol Biochem 45(3):1270–1283

    Article  CAS  PubMed  Google Scholar 

  297. Liberzon A et al (2015) The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst 1(6):417–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Mi H et al (2019) PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res 47(D1):D419–D426

    Article  CAS  PubMed  Google Scholar 

  299. Kanehisa M et al (2019) New approach for understanding genome variations in KEGG. Nucleic Acids Res 47(D1):D590–D595

    Article  CAS  PubMed  Google Scholar 

  300. Subramanian A et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102(43):15545–15550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Reimand J et al (2019) Pathway enrichment analysis and visualization of omics data using g:Profiler, GSEA, Cytoscape and EnrichmentMap. Nat Protoc 14(2):482–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. West JA et al (2014) The long noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites. Mol Cell 55(5):791–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Mularoni L et al (2016) OncodriveFML: a general framework to identify coding and non-coding regions with cancer driver mutations. Genome Biol 17(1):128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  304. Lanzos A et al (2017) Discovery of cancer driver long noncoding RNAs across 1112 tumour genomes: new candidates and distinguishing features. Sci Rep 7:41544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Zhang Y et al (2019) Identifying cancer driver lncRNAs bridged by functional effectors through integrating multi-omics data in human cancers. Mol Ther Nucleic Acids 17:362–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Gao Y et al (2019) Lnc2Cancer v2.0: updated database of experimentally supported long non-coding RNAs in human cancers. Nucleic Acids Res 47(D1):D1028–D1033

    Article  CAS  PubMed  Google Scholar 

  307. Bao Z et al (2019) LncRNADisease 2.0: an updated database of long non-coding RNA-associated diseases. Nucleic Acids Res 47(D1):D1034–D1037

    Article  CAS  PubMed  Google Scholar 

  308. Hu X et al (2014) A functional genomic approach identifies FAL1 as an oncogenic long noncoding RNA that associates with BMI1 and represses p21 expression in cancer. Cancer Cell 26(3):344–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Zhou CC et al (2016) Systemic genome screening identifies the outcome associated focal loss of long noncoding RNA PRAL in hepatocellular carcinoma. Hepatology 63(3):850–863

    Article  CAS  PubMed  Google Scholar 

  310. Li ZX et al (2018) MALAT1: a potential biomarker in cancer. Cancer Manag Res 10:6757–6768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Tang F et al (2020) LncRNA-ATB in cancers: what do we know so far? Mol Biol Rep 47(5):4077–4086

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua-Sheng Chiu or Pavel Sumazin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chiu, HS., Somvanshi, S., Chen, TW., Sumazin, P. (2021). Illuminating lncRNA Function Through Target Prediction. In: Zhang, L., Hu, X. (eds) Long Non-Coding RNAs. Methods in Molecular Biology, vol 2372. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1697-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1697-0_22

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1696-3

  • Online ISBN: 978-1-0716-1697-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics