Skip to main content

Chemotaxis: Under Agarose Assay

  • Protocol
  • First Online:
Cytoskeleton

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2364))

  • 1313 Accesses

Abstract

The unicellular eukaryotic amoeba, Dictyostelium discoideum, represents a superb model for examining the molecular mechanism of chemotaxis. Under vegetative conditions, the amoebae are chemotactically responsive to pterins, such as folic acid. Under starved conditions, they lose their sensitivity to pterins and become chemotactically responsive to cAMP. As an NIH model system, Dictyostelium offers a variety of advantages in studying chemotaxis, including ease of growth, genetic tractability, and the conservation of mammalian signaling pathways. In this chapter, we describe the use of the under-agarose chemotaxis assay to understand the signaling pathways controlling directional sensing and motility in Dictyostelium discoideum. Given the similarities between Dictyostelium and mammalian cells, this allows us to dissect conserved pathways involved in eukaryotic chemotaxis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Diez S, Gerisch G, Anderson K, Müller-Taubenberger A, Bretschneider T (2005) Subsecond reorganization of the actin network in cell motility and chemotaxis. Proc Natl Acad Sci U S A 102:7601–7606

    Article  CAS  Google Scholar 

  2. van Haastert PJM, Devreotes P (2004) Chemotaxis: signaling the way forward. Nat Rev Mol Cell Biol 5:626–634

    Article  Google Scholar 

  3. Nichols JM, Veltman D, Kay RR (2015) Chemotaxis of a model organism: progress with Dictyostelium. Curr Opin Cell Biol 36:7–12

    Article  CAS  Google Scholar 

  4. King JS, Insall RH (2009) Chemotaxis: finding the way forward with Dictyostelium. Trends Cell Biol 19:523–530

    Article  CAS  Google Scholar 

  5. Artemenko Y, Lampert TJ, Devreotes PN (2014) Moving towards a paradigm: common mechanisms of chemotactic signaling in Dictyostelium and mammalian leukocytes. Cell Mol Life Sci 71:3711–3747

    Article  CAS  Google Scholar 

  6. Jin T, Xu X, Fang J, Isik N, Yan J, Brzostowski JA, Hereld D (2009) How human leukocytes track down and destroy pathogens: lessons learned from the model organism Dictyostelium discoideum. Immunol Res 43:118–127

    Article  Google Scholar 

  7. Pan P, Hall EM, Bonner JT (1975) Determination of the active portion of the folic acid molecule in cellular slime mold chemotaxis. J Bacteriol 122:185–191

    Article  CAS  Google Scholar 

  8. Van Haastert PJ, De Wit RJ, Grijpma Y, Konijn TM (1982) Identification of a pterin as the acrasin of the cellular slime mold Dictyostelium lacteum. Proc Natl Acad Sci U S A 79:6270–6274

    Article  Google Scholar 

  9. Pan M, Xu X, Chen Y, Jin T (2016) Identification of a chemoattractant G-protein-coupled receptor for folic acid that controls both chemotaxis and phagocytosis. Dev Cell 36:428–439

    Article  CAS  Google Scholar 

  10. Mahadeo DC, Parent CA (2006) Signal relay during the life cycle of Dictyostelium. Curr Top Dev Biol 73:115–140

    Article  CAS  Google Scholar 

  11. Varnum B, Soll DR (1981) Chemoresponsiveness to cAMP and folic acid during growth, development, and dedifferentiation in Dictyostelium discoideum. Differentiation 18:151–160

    Article  CAS  Google Scholar 

  12. Parent CA, Devreotes PN (1996) Molecular genetics of signal transduction in Dictyostelium. Annu Rev Biochem 65:411–440

    Article  CAS  Google Scholar 

  13. Gerisch G, Keller HU (1981) Chemotactic reorientation of granulocytes stimulated with micropipettes containing fMet-Leu-Phe. J Cell Sci 52:1–10

    Article  CAS  Google Scholar 

  14. Zicha D, Dunn GA, Brown AF (1991) A new direct-viewing chemotaxis chamber. J Cell Sci 99:769–775

    Article  Google Scholar 

  15. Muinonen-Martin AJ, Veltman DM, Kalna G, Insall RH (2010) An improved chamber for direct visualisation of chemotaxis. PLoS One 5:e15309

    Article  CAS  Google Scholar 

  16. Cutler JE, Munoz JJ (1974) A simple in vitro method for studies on chemotaxis. Proc Soc Exp Biol Med 147:471–474

    Article  CAS  Google Scholar 

  17. Lauffenburger D, Rothman C, Zigmond SH (1983) Measurement of leukocyte motility and chemotaxis parameters with a linear under-agarose migration assay. J Immunol 131:940–947

    CAS  PubMed  Google Scholar 

  18. Laevsky G, Knecht DA (2001) Under-agarose folate chemotaxis of Dictyostelium discoideum amoebae in permissive and mechanically inhibited conditions. BioTechniques 31:1140–1149

    Article  CAS  Google Scholar 

  19. Laevsky G, Knecht DA (2003) Cross-linking of actin filaments by myosin II is a major contributor to cortical integrity and cell motility in restrictive environments. J Cell Sci 116:3761–3770

    Article  CAS  Google Scholar 

  20. Xu XS, Lee E, Chen T, Kuczmarski E, Chisholm RL, Knecht DA (2001) During multicellular migration, myosin ii serves a structural role independent of its motor function. Dev Biol 232:255–264

    Article  CAS  Google Scholar 

  21. Devreotes PN, Zigmond SH (1988) Chemotaxis in eukaryotic cells: a focus on leukocytes and Dictyostelium. Annu Rev Cell Biol 4:649–686

    Article  CAS  Google Scholar 

  22. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  Google Scholar 

  23. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  Google Scholar 

  24. Edelstein A, Amodaj N, Hoover K, Vale R, Stuurman N (2010) Computer control of microscopes using μManager. Curr Protoc Mol Biol Chapter 14: Unit14.20

    Google Scholar 

  25. Edelstein AD, Tsuchida MA, Amodaj N, Pinkard H, Vale RD, Stuurman N (2014) Advanced methods of microscope control using μManager software. J Biol Methods 1

    Google Scholar 

  26. Lemieux MG, Janzen D, Hwang R, Roldan J, Jarchum I, Knecht DA (2014) Visualization of the actin cytoskeleton: different F-actin-binding probes tell different stories. Cytoskeleton (Hoboken) 71:157–169

    Article  CAS  Google Scholar 

  27. Lauffenburger DA, Tranquillo RT, Zigmond SH (1988) Concentration gradients of chemotactic factors in chemotaxis assays. Methods Enzymol 162:85–101

    Article  CAS  Google Scholar 

  28. Pan P, Wurster B (1978) Inactivation of the chemoattractant folic acid by cellular slime molds and identification of the reaction product. J Bacteriol 136:955–959

    Article  CAS  Google Scholar 

  29. Aubry L, Firtel R (1999) Integration of signaling networks that regulate Dictyostelium differentiation. Annu Rev Cell Dev Biol 15:469–517

    Article  CAS  Google Scholar 

  30. Tweedy L, Knecht DA, Mackay GM, Insall RH (2016) Self-generated chemoattractant gradients: attractant depletion extends the range and robustness of chemotaxis. PLoS Biol 14:e1002404

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Derrick Brazill or David A. Knecht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Brazill, D., Knecht, D.A. (2022). Chemotaxis: Under Agarose Assay. In: Gavin, R.H. (eds) Cytoskeleton . Methods in Molecular Biology, vol 2364. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1661-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1661-1_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1660-4

  • Online ISBN: 978-1-0716-1661-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics