Skip to main content

Isolation and Neuronal Reprogramming of Mouse Embryonic Fibroblasts

  • Protocol
  • First Online:
Neural Reprogramming

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2352))

Abstract

Forced expression of specific neuronal transcription factors in mouse embryonic fibroblasts (MEFs) can lead to their direct conversion into functional neurons. Direct neuronal reprogramming has become a powerful tool to characterize individual factors and molecular mechanisms involved in forced and normal neurogenesis and to generate neuronal cell types for in vitro studies. Here we provide a detailed protocol for the isolation of MEFs devoid of neural tissue and their direct reprogramming into functional neurons by overexpression of neuronal reprogramming factors (Ascl1, Brn2, and Myt1l) using lentiviral vectors. This method enables quick and efficient generation of mouse neurons in vitro for versatile functional and mechanistic characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Masserdotti G, Gascón S, Götz M (2016) Direct neuronal reprogramming: learning from and for development. Development 143:2494–2510. https://doi.org/10.1242/dev.092163

    Article  CAS  PubMed  Google Scholar 

  2. Colasante G, Rubio A, Massimino L, Broccoli V (2019) Direct neuronal reprogramming reveals unknown functions for known transcription factors. Front Neurosci 13:283. https://doi.org/10.3389/fnins.2019.00283

    Article  PubMed  PubMed Central  Google Scholar 

  3. Vierbuchen T, Ostermeier A, Pang ZP et al (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463:1035–1041. https://doi.org/10.1038/nature08797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wapinski OL, Vierbuchen T, Qu K et al (2013) Hierarchical mechanisms for direct reprogramming of fibroblasts to neurons. Cell 155:621–635. https://doi.org/10.1016/j.cell.2013.09.028

    Article  CAS  PubMed  Google Scholar 

  5. Mall M, Kareta MS, Chanda S et al (2017) Myt1l safeguards neuronal identity by actively repressing many non-neuronal fates. Nature 544:245–249. https://doi.org/10.1038/nature21722

    Article  CAS  PubMed  Google Scholar 

  6. Luo C, Lee QY, Wapinski O et al (2019) Global DNA methylation remodeling during direct reprogramming of fibroblasts to neurons. elife 8:e40197. https://doi.org/10.7554/eLife.40197

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chanda S, Ang CE, Davila J et al (2014) Generation of induced neuronal cells by the single reprogramming factor ASCL1. Stem Cell Reports 3:282–296. https://doi.org/10.1016/j.stemcr.2014.05.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Adrian-Segarra JM, Weigel B, Mall M (2021) Combining cell fate reprogramming and protein engineering to study transcription factor functions. In: Ahlenius H (ed) Neural reprogramming: methods and protocols. Methods in molecular biology, vol 2352. Springer, New York

    Google Scholar 

  9. Drouin-Ouellet J, Pircs K, Barker RA et al (2017) Direct neuronal reprogramming for disease modeling studies using patient-derived neurons: what have we learned? Front Neurosci 11:530. https://doi.org/10.3389/fnins.2017.00530

    Article  PubMed  PubMed Central  Google Scholar 

  10. Pang ZP, Yang N, Vierbuchen T et al (2011) Induction of human neuronal cells by defined transcription factors. Nature 476:220–223. https://doi.org/10.1038/nature10202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang Y, Pak C, Han Y et al (2013) Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron 78:785–798. https://doi.org/10.1016/j.neuron.2013.05.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang N, Chanda S, Marro S et al (2017) Generation of pure GABAergic neurons by transcription factor programming. Nat Methods 14:621–628. https://doi.org/10.1038/nmeth.4291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pruett SB, Obiri N, Kiel JL (1989) Involvement and relative importance of at least two distinct mechanisms in the effects of 2-mercaptoethanol on murine lymphocytes in culture. J Cell Physiol 141:40–45. https://doi.org/10.1002/jcp.1041410107

    Article  CAS  PubMed  Google Scholar 

  14. DuBridge RB, Tang P, Hsia HC et al (1987) Analysis of mutation in human cells by using an Epstein-Barr virus shuttle system. Mol Cell Biol 7:379–387. https://doi.org/10.1128/mcb.7.1.379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pear WS, Nolan GP, Scott ML, Baltimore D (1993) Production of high-titer helper-free retroviruses by transient transfection. Proc Natl Acad Sci U S A 90:8392–8396. https://doi.org/10.1073/pnas.90.18.8392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xu J (2005) Preparation, culture, and immortalization of mouse embryonic fibroblasts. Curr Protoc Mol Biol 28(1):1–8

    PubMed  Google Scholar 

  17. Elegheert J, Behiels E, Bishop B et al (2018) Lentiviral transduction of mammalian cells for fast, scalable and high-level production of soluble and membrane proteins. Nat Protoc 13:2991–3017. https://doi.org/10.1038/s41596-018-0075-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xie Q, Xinyong G, Xianjin C, Yayu W (2013) PEI/DNA formation affects transient gene expression in suspension Chinese hamster ovary cells via a one-step transfection process. Cytotechnology 65:263–271. https://doi.org/10.1007/s10616-012-9483-9

    Article  CAS  PubMed  Google Scholar 

  19. Higashikawa F, Chang L (2001) Kinetic analyses of stability of simple and complex retroviral vectors. Virology 280:124–131. https://doi.org/10.1006/viro.2000.0743

    Article  CAS  PubMed  Google Scholar 

  20. Murray EJ (1991) Gene transfer and expression protocols. Humana Press, Clifton, NJ

    Book  Google Scholar 

  21. Kutner RH, Zhang X-Y, Reiser J (2009) Production, concentration and titration of pseudotyped HIV-1-based lentiviral vectors. Nat Protoc 4:495–505. https://doi.org/10.1038/nprot.2009.22

    Article  CAS  PubMed  Google Scholar 

  22. Kumar M, Keller B, Makalou N, Sutton RE (2001) Systematic determination of the packaging limit of lentiviral vectors. Hum Gene Ther 12:1893–1905. https://doi.org/10.1089/104303401753153947

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moritz Mall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Adrian-Segarra, J.M., Weigel, B., Mall, M. (2021). Isolation and Neuronal Reprogramming of Mouse Embryonic Fibroblasts. In: Ahlenius, H. (eds) Neural Reprogramming. Methods in Molecular Biology, vol 2352. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1601-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1601-7_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1600-0

  • Online ISBN: 978-1-0716-1601-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics