Skip to main content

Evaluation of Mitochondrial Function and Morphology in Drosophila

  • Protocol
  • First Online:
Experimental Models of Parkinson’s Disease

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2322))

Abstract

Drosophila melanogaster (Drosophila, fruit fly, or fly) is an important model organism in the studies of molecular genetic analysis and mechanism of Parkinson’s disease (PD), benefiting from its powerful genetic tools and massive available genetic mutants. People have generated different fly models to mimic the inherited PDs and most of them have obvious mitochondrial abnormalities. Here, we describe some common approaches to analyze mitochondrial functions and morphological changes in Drosophila PD models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kalia LV, Lang AE (2015) Parkinson’s disease. Lancet 386(9996):896–912. https://doi.org/10.1016/S0140-6736(14)61393-3

    Article  CAS  PubMed  Google Scholar 

  2. Michell AW, Lewis SJ, Foltynie T, Barker RA (2004) Biomarkers and Parkinson’s disease. Brain 127(Pt 8):1693–1705. https://doi.org/10.1093/brain/awh198

    Article  CAS  PubMed  Google Scholar 

  3. Tysnes OB, Storstein A (2017) Epidemiology of Parkinson’s disease. J Neural Transm (Vienna) 124(8):901–905. https://doi.org/10.1007/s00702-017-1686-y

    Article  Google Scholar 

  4. Kim CY, Alcalay RN (2017) Genetic forms of Parkinson’s disease. Semin Neurol 37(2):135–146. https://doi.org/10.1055/s-0037-1601567

    Article  PubMed  Google Scholar 

  5. Park JS, Davis RL, Sue CM (2018) Mitochondrial dysfunction in Parkinson’s disease: new mechanistic insights and therapeutic perspectives. Curr Neurol Neurosci Rep 18(5):21. https://doi.org/10.1007/s11910-018-0829-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu W, Acín-Peréz R, Geghman KD, Manfredi G, Lu B, Li C (2011) Pink1 regulates the oxidative phosphorylation machinery via mitochondrial fission. Proc Natl Acad Sci U S A 108(31):12920–12924. https://doi.org/10.1073/pnas.1107332108

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gehrke S, Wu Z, Klinkenberg M, Sun Y, Auburger G, Guo S, Lu B (2015) PINK1 and Parkin control localized translation of respiratory chain component mRNAs on mitochondria outer membrane. Cell Metab 21(1):95–108. https://doi.org/10.1016/j.cmet.2014.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dias V, Junn E, Mouradian MM (2013) The role of oxidative stress in Parkinson’s disease. J Parkinsons Dis 3(4):461–491. https://doi.org/10.3233/JPD-130230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Coulom H, Birman S (2004) Chronic exposure to rotenone models sporadic Parkinson’s disease in Drosophila melanogaster. J Neurosci Off J Soc Neurosci 24(48):10993–10998. https://doi.org/10.1523/JNEUROSCI.2993-04.2004

    Article  CAS  Google Scholar 

  10. Schapira AH, Cooper JM, Dexter D, Jenner P, Clark JB, Marsden CD (1989) Mitochondrial complex I deficiency in Parkinson’s disease. Lancet 1(8649):1269. https://doi.org/10.1016/s0140-6736(89)92366-0

    Article  CAS  PubMed  Google Scholar 

  11. Bindoff LA, Birch-Machin M, Cartlidge NE, Parker WD, Turnbull DM (1989) Mitochondrial function in Parkinson’s disease. Lancet 2(8653):49. https://doi.org/10.1016/s0140-6736(89)90291-2

    Article  CAS  PubMed  Google Scholar 

  12. Ugur B, Chen K, Bellen HJ (2016) Drosophila tools and assays for the study of human diseases. Dis Model Mech 9(3):235–244. https://doi.org/10.1242/dmm.023762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu S, Lu B (2010) Reduction of protein translation and activation of autophagy protect against PINK1 pathogenesis in Drosophila melanogaster. PLoS Genet 6(12):e1001237. https://doi.org/10.1371/journal.pgen.1001237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang Y, Gehrke S, Imai Y, Huang Z, Ouyang Y, Wang JW, Yang L, Beal MF, Vogel H, Lu B (2006) Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc Natl Acad Sci U S A 103(28):10793–10798. https://doi.org/10.1073/pnas.0602493103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Clark IE, Dodson MW, Jiang C, Cao JH, Huh JR, Seol JH, Yoo SJ, Hay BA, Guo M (2006) Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441(7097):1162–1166. https://doi.org/10.1038/nature04779

    Article  CAS  PubMed  Google Scholar 

  16. Park J, Lee SB, Lee S, Kim Y, Song S, Kim S, Bae E, Kim J, Shong M, Kim JM, Chung J (2006) Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441(7097):1157–1161. https://doi.org/10.1038/nature04788

    Article  CAS  PubMed  Google Scholar 

  17. Wu Z, Sawada T, Shiba K, Liu S, Kanao T, Takahashi R, Hattori N, Imai Y, Lu B (2013) Tricornered/NDR kinase signaling mediates PINK1-directed mitochondrial quality control and tissue maintenance. Genes Dev 27(2):157–162. https://doi.org/10.1101/gad.203406.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu Z, Wang X, Yu Y, Li X, Wang T, Jiang H, Ren Q, Jiao Y, Sawa A, Moran T, Ross CA, Montell C, Smith WW (2008) A Drosophila model for LRRK2-linked parkinsonism. Proc Natl Acad Sci U S A 105(7):2693–2698. https://doi.org/10.1073/pnas.0708452105

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hao LY, Giasson BI, Bonini NM (2010) DJ-1 is critical for mitochondrial function and rescues PINK1 loss of function. Proc Natl Acad Sci U S A 107(21):9747–9752. https://doi.org/10.1073/pnas.0911175107

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dorn GW (2019) Evolving concepts of mitochondrial dynamics. Annu Rev Physiol 81:1–17. https://doi.org/10.1146/annurev-physiol-020518-114358

    Article  CAS  PubMed  Google Scholar 

  21. Ferree A, Shirihai O (2012) Mitochondrial dynamics: the intersection of form and function. Adv Exp Med Biol 748:13–40. https://doi.org/10.1007/978-1-4614-3573-0_2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang Y, Ouyang Y, Yang L, Beal MF, McQuibban A, Vogel H, Lu B (2008) Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery. Proc Natl Acad Sci U S A 105(19):7070–7075. https://doi.org/10.1073/pnas.0711845105

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wu Z, Wu A, Dong J, Sigears A, Lu B (2018) Grape skin extract improves muscle function and extends lifespan of a Drosophila model of Parkinson’s disease through activation of Mitophagy. Exp Gerontol 113:10–17. https://doi.org/10.1016/j.exger.2018.09.014

    Article  CAS  PubMed  Google Scholar 

  24. Wu Z, Wang Y, Lim J, Liu B, Li Y, Vartak R, Stankiewicz T, Montgomery S, Lu B (2018) Ubiquitination of ABCE1 by NOT4 in response to mitochondrial damage links co-translational quality control to PINK1-directed Mitophagy. Cell Metab 28(1):130–144.e7. https://doi.org/10.1016/j.cmet.2018.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kristián T, Hopkins IB, McKenna MC, Fiskum G (2006) Isolation of mitochondria with high respiratory control from primary cultures of neurons and astrocytes using nitrogen cavitation. J Neurosci Methods 152(1–2):136–143. https://doi.org/10.1016/j.jneumeth.2005.08.018

    Article  CAS  PubMed  Google Scholar 

  26. Austin S, Tavakoli M, Pfeiffer C, Seifert J, Mattarei A, De Stefani D, Zoratti M, Nowikovsky K (2017) LETM1-mediated K + and Na + homeostasis regulates mitochondrial ca 2+ efflux. Front Physiol 8:839. https://doi.org/10.3389/fphys.2017.00839

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wu Z, Du Y, Xue H, Wu Y, Zhou B (2012) Aluminum induces neurodegeneration and its toxicity arises from increased Iron accumulation and reactive oxygen species (ROS) production. Neurobiol Aging 33(1):199.e1–199.e12. https://doi.org/10.1016/j.neurobiolaging.2010.06.018

    Article  CAS  Google Scholar 

  28. Robb JA (1969) Maintenance of imaginal discs of Drosophila melanogaster in chemically defined media. J Cell Biol 41(3):876–885. https://doi.org/10.1083/jcb.41.3.876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work is supported by the start-up grant of Southern Methodist University to Z.W and the Mustang Fellowship to F.T. We thank Mr. Sree Nallamothu for manuscript proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihao Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tang, Y., Tahmasebinia, F., Wu, Z. (2021). Evaluation of Mitochondrial Function and Morphology in Drosophila. In: Imai, Y. (eds) Experimental Models of Parkinson’s Disease. Methods in Molecular Biology, vol 2322. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1495-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1495-2_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1494-5

  • Online ISBN: 978-1-0716-1495-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics