Skip to main content

Mitochondrial Dynamics: The Intersection of Form and Function

  • Chapter
  • First Online:
Mitochondrial Oxidative Phosphorylation

Part of the book series: Advances in Experimental Medicine and Biology ((volume 748))

Abstract

Mitochondria within a cell exist as a population in a dynamic ­morphological continuum. The balance of mitochondrial fusion and fission dictates a spectrum of shapes from interconnected networks to fragmented individual units. This plasticity bestows the adaptive flexibility needed to adjust to changing cellular stresses and metabolic demands. The mechanisms that regulate mitochondrial dynamics, their importance in normal cell biology, and the roles they play in disease conditions are only beginning to be understood. Dysfunction of mitochondrial dynamics has been identified as a possible disease mechanism in Parkinson’s disease. This chapter will introduce the budding field of mitochondrial dynamics and explore unique characteristics of affected neurons in Parkinson’s disease that increase susceptibility to disruptions in mitochondrial dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-Sleiman PM, Healy DG, Wood NW (2004) Causes of Parkinson’s disease: genetics of DJ-1. Cell Tissue Res 318(1):185–188

    PubMed  CAS  Google Scholar 

  • Ahlskog JE (2009) Parkin and PINK1 parkinsonism may represent nigral mitochondrial cytopathies distinct from Lewy body Parkinson’s disease. Parkinsonism Relat Disord 15(10):721–727

    PubMed  Google Scholar 

  • Andreeva AV, Kutuzov MA, Voyno-Yasenetskaya TA (2008) G alpha12 is targeted to the mitochondria and affects mitochondrial morphology and motility. FASEB J 22(8):2821–2831

    PubMed  CAS  Google Scholar 

  • Arakaki N et al (2006) Dynamics of mitochondria during the cell cycle. Biol Pharm Bull 29(9): 1962–1965

    PubMed  CAS  Google Scholar 

  • Arbuthnott GW, Wickens J (2007) Space, time and dopamine. Trends Neurosci 30(2):62–69

    PubMed  CAS  Google Scholar 

  • Arimura S et al (2004) Frequent fusion and fission of plant mitochondria with unequal nucleoid distribution. Proc Natl Acad Sci USA 101(20):7805–7808

    PubMed  CAS  Google Scholar 

  • Baricault L et al (2007) OPA1 cleavage depends on decreased mitochondrial ATP level and bivalent metals. Exp Cell Res 313(17):3800–3808

    PubMed  CAS  Google Scholar 

  • Berman SB et al (2009) Bcl-x L increases mitochondrial fission, fusion, and biomass in neurons. J Cell Biol 184(5):707–719

    PubMed  CAS  Google Scholar 

  • Betzig E et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645

    PubMed  CAS  Google Scholar 

  • Blackinton J et al (2005) Effects of DJ-1 mutations and polymorphisms on protein stability and subcellular localization. Brain Res Mol Brain Res 134(1):76–83

    PubMed  CAS  Google Scholar 

  • Blackinton J et al (2009) Post-transcriptional regulation of mRNA associated with DJ-1 in sporadic Parkinson disease. Neurosci Lett 452(1):8–11

    PubMed  CAS  Google Scholar 

  • Boldogh IR, Pon LA (2007) Mitochondria on the move. Trends Cell Biol 17(10):502–510

    PubMed  CAS  Google Scholar 

  • Bowes TJ, Gupta RS (2005) Induction of mitochondrial fusion by cysteine-alkylators ethacrynic acid and N-ethylmaleimide. J Cell Physiol 202(3):796–804

    PubMed  CAS  Google Scholar 

  • Bowes T, Gupta RS (2008) Novel mitochondrial extensions provide evidence for a link between microtubule-directed movement and mitochondrial fission. Biochem Biophys Res Commun 376(1):40–45

    PubMed  CAS  Google Scholar 

  • Braak H, Del Tredici K (2008) Invited Article: Nervous system pathology in sporadic Parkinson disease. Neurology 70(20):1916–1925

    PubMed  Google Scholar 

  • Braak H et al (2004) Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 318(1):121–134

    PubMed  Google Scholar 

  • Braschi E, Zunino R, McBride HM (2009) MAPL is a new mitochondrial SUMO E3 ligase that regulates mitochondrial fission. EMBO Rep 10(7):748–754

    PubMed  CAS  Google Scholar 

  • Busch KB et al (2006) Mitochondrial dynamics generate equal distribution but patchwork localization of respiratory Complex I. Mol Membr Biol 23(6):509–520

    PubMed  CAS  Google Scholar 

  • Canet-Aviles RM et al (2004) The Parkinson’s disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proc Natl Acad Sci USA 101(24):9103–9108

    PubMed  CAS  Google Scholar 

  • Casasnovas C et al (2010) Phenotypic spectrum of MFN2 mutations in the Spanish population. J Med Genet 47(4):249–256

    PubMed  CAS  Google Scholar 

  • Cereghetti GM et al (2008) Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria. Proc Natl Acad Sci USA 105(41):15803–15808

    PubMed  CAS  Google Scholar 

  • Cereghetti GM, Costa V, Scorrano L (2010) Inhibition of Drp1-dependent mitochondrial fragmentation and apoptosis by a polypeptide antagonist of calcineurin. Cell Death Differ 17(11):1785–1794

    PubMed  CAS  Google Scholar 

  • Chan DC (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 125(7):1241–1252

    PubMed  CAS  Google Scholar 

  • Chan NC, Chan DC (2011) Parkin uses the UPS to ship off dysfunctional mitochondria. Autophagy 7(7):771–772

    PubMed  Google Scholar 

  • Chan NC et al (2011) Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum Mol Genet 20(9):1726–1737

    PubMed  CAS  Google Scholar 

  • Chen H, Chan DC (2005) Emerging functions of mammalian mitochondrial fusion and fission. Hum Mol Genet 14 Spec No. 2:R283–R289

    PubMed  Google Scholar 

  • Chen H et al (2003) Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 160(2):189–200

    PubMed  CAS  Google Scholar 

  • Chen H, Chomyn A, Chan DC (2005) Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J Biol Chem 280(28):26185–26192

    PubMed  CAS  Google Scholar 

  • Chen Y, Liu Y, Dorn GW 2nd (2011) Mitochondrial fusion is essential for organelle function and cardiac homeostasis. Circ Res 109(12):1327–1331

    PubMed  CAS  Google Scholar 

  • Ching CK et al (2010) A novel mitofusin 2 gene mutation causing Charcot-Marie-Tooth type 2A disease in a Chinese family. Chin Med J (Engl) 123(11):1466–1469

    CAS  Google Scholar 

  • Cho DH et al (2009) S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury. Science 324(5923):102–105

    PubMed  CAS  Google Scholar 

  • Choudhary V et al (2011) Novel role of androgens in mitochondrial fission and apoptosis. Mol Cancer Res 9(8):1067–1077

    PubMed  CAS  Google Scholar 

  • Chu CT (2010a) A pivotal role for PINK1 and autophagy in mitochondrial quality control: implications for Parkinson disease. Hum Mol Genet 19(R1):R28–R37

    PubMed  CAS  Google Scholar 

  • Chu CT (2010b) Tickled PINK1: mitochondrial homeostasis and autophagy in recessive Parkinsonism. Biochim Biophys Acta 1802(1):20–28

    PubMed  CAS  Google Scholar 

  • Cipolat S et al (2004) OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc Natl Acad Sci USA 101(45):15927–15932

    PubMed  CAS  Google Scholar 

  • Cipolat S et al (2006) Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling. Cell 126(1):163–175

    PubMed  CAS  Google Scholar 

  • Cribbs JT, Strack S (2007) Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep 8(10): 939–944

    PubMed  CAS  Google Scholar 

  • Dagda RK, Chu CT (2009) Mitochondrial quality control: insights on how Parkinson’s disease related genes PINK1, parkin, and Omi/HtrA2 interact to maintain mitochondrial homeostasis. J Bioenerg Biomembr 41(6):473–479

    PubMed  CAS  Google Scholar 

  • Dagda RK et al (2009a) Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J Biol Chem 284(20):13843–13855

    PubMed  CAS  Google Scholar 

  • Dagda RK, Zhu J, Chu CT (2009b) Mitochondrial kinases in Parkinson’s disease: converging insights from neurotoxin and genetic models. Mitochondrion 9(5):289–298

    PubMed  CAS  Google Scholar 

  • de Brito OM, Scorrano L (2008) Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456(7222):605–610

    PubMed  Google Scholar 

  • Dimmer KS, Scorrano L (2006) (De)constructing mitochondria: what for? Physiology (Bethesda) 21:233–241

    CAS  Google Scholar 

  • Ding WX et al (2010a) Nix is critical to two distinct phases of mitophagy, reactive oxygen species-mediated autophagy induction and Parkin-ubiquitin-p62-mediated mitochondrial priming. J Biol Chem 285(36):27879–27890

    PubMed  CAS  Google Scholar 

  • Ding H et al (2010b) Response of mitochondrial fusion and fission protein gene expression to exercise in rat skeletal muscle. Biochim Biophys Acta 1800(3):250–256

    PubMed  CAS  Google Scholar 

  • Dodson MW, Guo M (2007) Pink1, Parkin, DJ-1 and mitochondrial dysfunction in Parkinson’s disease. Curr Opin Neurobiol 17(3):331–337

    PubMed  CAS  Google Scholar 

  • Duvezin-Caubet S et al (2006) Proteolytic processing of OPA1 links mitochondrial dysfunction to alterations in mitochondrial morphology. J Biol Chem 281(49):37972–37979

    PubMed  CAS  Google Scholar 

  • Ehses S et al (2009) Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1. J Cell Biol 187(7):1023–1036

    PubMed  CAS  Google Scholar 

  • Elachouri G et al (2011) OPA1 links human mitochondrial genome maintenance to mtDNA ­replication and distribution. Genome Res 21(1):12–20

    PubMed  CAS  Google Scholar 

  • Elmore SP et al (2001) The mitochondrial permeability transition initiates autophagy in rat ­hepatocytes. FASEB J 15(12):2286–2287

    PubMed  CAS  Google Scholar 

  • Exner N et al (2007) Loss-of-function of human PINK1 results in mitochondrial pathology and can be rescued by parkin. J Neurosci 27(45):12413–12418

    PubMed  CAS  Google Scholar 

  • Feely SM et al (2011) MFN2 mutations cause severe phenotypes in most patients with CMT2A. Neurology 76(20):1690–1696

    PubMed  CAS  Google Scholar 

  • Fehrenbacher KL et al (2004) Live cell imaging of mitochondrial movement along actin cables in budding yeast. Curr Biol 14(22):1996–2004

    PubMed  CAS  Google Scholar 

  • Ferre M et al (2009) Molecular screening of 980 cases of suspected hereditary optic neuropathy with a report on 77 novel OPA1 mutations. Hum Mutat 30(7):E692–E705

    PubMed  Google Scholar 

  • Ferrer I et al (2011) Neuropathology of sporadic Parkinson disease before the appearance of parkinsonism: preclinical Parkinson disease. J Neural Transm 118(5):821–839

    PubMed  Google Scholar 

  • Figueroa-Romero C et al (2009) SUMOylation of the mitochondrial fission protein Drp1 occurs at multiple nonconsensus sites within the B domain and is linked to its activity cycle. FASEB J 23(11):3917–3927

    PubMed  CAS  Google Scholar 

  • Frank S et al (2001) The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell 1(4):515–525

    PubMed  CAS  Google Scholar 

  • Frezza C et al (2006) OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126(1):177–189

    PubMed  CAS  Google Scholar 

  • Fukushima NH et al (2001) The GTPase effector domain sequence of the Dnm1p GTPase ­regulates self-assembly and controls a rate-limiting step in mitochondrial fission. Mol Biol Cell 12(9):2756–2766

    PubMed  CAS  Google Scholar 

  • Gandhi S et al (2009) PINK1-associated Parkinson’s disease is caused by neuronal vulnerability to calcium-induced cell death. Mol Cell 33(5):627–638

    PubMed  CAS  Google Scholar 

  • Gandre-Babbe S, van der Bliek AM (2008) The novel tail-anchored membrane protein Mff controls mitochondrial and peroxisomal fission in mammalian cells. Mol Biol Cell 19(6):2402–2412

    PubMed  CAS  Google Scholar 

  • Gegg ME et al (2010) Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Hum Mol Genet 19(24):4861–4870

    PubMed  CAS  Google Scholar 

  • Geisler S et al (2010a) PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 12(2):119–131

    PubMed  CAS  Google Scholar 

  • Geisler S et al (2010b) The PINK1/Parkin-mediated mitophagy is compromised by PD-associated mutations. Autophagy 6(7):871–878

    PubMed  CAS  Google Scholar 

  • Gerencser AA, Nicholls DG (2008) Measurement of instantaneous velocity vectors of organelle transport: mitochondrial transport and bioenergetics in hippocampal neurons. Biophys J 95(6):3079–3099

    PubMed  CAS  Google Scholar 

  • Gilkerson RW et al (2008) Mitochondrial nucleoids maintain genetic autonomy but allow for ­functional complementation. J Cell Biol 181(7):1117–1128

    PubMed  CAS  Google Scholar 

  • Gispert S et al (2009) Parkinson phenotype in aged PINK1-deficient mice is accompanied by progressive mitochondrial dysfunction in absence of neurodegeneration. PLoS One 4(6):e5777

    PubMed  Google Scholar 

  • Glater EE et al (2006) Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent. J Cell Biol 173(4):545–557

    PubMed  CAS  Google Scholar 

  • Glauser L et al (2011) Parkin promotes the ubiquitination and degradation of the mitochondrial fusion factor mitofusin 1. J Neurochem 118(4):636–645

    PubMed  CAS  Google Scholar 

  • Goldberg MS et al (2005) Nigrostriatal dopaminergic deficits and hypokinesia caused by inactivation of the familial Parkinsonism-linked gene DJ-1. Neuron 45(4):489–496

    PubMed  CAS  Google Scholar 

  • Gomes LC, Scorrano L (2008) High levels of Fis1, a pro-fission mitochondrial protein, trigger autophagy. Biochim Biophys Acta 1777(7–8):860–866

    PubMed  CAS  Google Scholar 

  • Gottlieb E (2006) OPA1 and PARL keep a lid on apoptosis. Cell 126(1):27–29

    PubMed  CAS  Google Scholar 

  • Griffin EE, Detmer SA, Chan DC (2006) Molecular mechanism of mitochondrial membrane fusion. Biochim Biophys Acta 1763(5–6):482–489

    PubMed  CAS  Google Scholar 

  • Griparic L, Kanazawa T, van der Bliek AM (2007) Regulation of the mitochondrial dynamin-like protein Opa1 by proteolytic cleavage. J Cell Biol 178(5):757–764

    PubMed  CAS  Google Scholar 

  • Grohm J, Plesnila N, Culmsee C (2010) Bid mediates fission, membrane permeabilization and peri-nuclear accumulation of mitochondria as a prerequisite for oxidative neuronal cell death. Brain Behav Immun 24(5):831–838

    PubMed  CAS  Google Scholar 

  • Grunewald A et al (2009) Differential effects of PINK1 nonsense and missense mutations on mitochondrial function and morphology. Exp Neurol 219(1):266–273

    PubMed  CAS  Google Scholar 

  • Guillery O et al (2008) Metalloprotease-mediated OPA1 processing is modulated by the mitochondrial membrane potential. Biol Cell 100(5):315–325

    PubMed  CAS  Google Scholar 

  • Guo X et al (2005) The GTPase dMiro is required for axonal transport of mitochondria to Drosophila synapses. Neuron 47(3):379–393

    PubMed  CAS  Google Scholar 

  • Guzman JN et al (2010) Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1. Nature 468(7324):696–700

    PubMed  CAS  Google Scholar 

  • Harder Z, Zunino R, McBride H (2004) Sumo1 conjugates mitochondrial substrates and participates in mitochondrial fission. Curr Biol 14(4):340–345

    PubMed  CAS  Google Scholar 

  • Hayashi T et al (2009) DJ-1 binds to mitochondrial complex I and maintains its activity. Biochem Biophys Res Commun 390(3):667–672

    PubMed  CAS  Google Scholar 

  • Hollenbeck PJ, Saxton WM (2005) The axonal transport of mitochondria. J Cell Sci 118(Pt 23): 5411–5419

    PubMed  CAS  Google Scholar 

  • Hom J et al (2010) Regulation of mitochondrial fission by intracellular Ca2+ in rat ventricular myocytes. Biochim Biophys Acta 1797(6–7):913–921

    PubMed  CAS  Google Scholar 

  • Hori A, Yoshida M, Ling F (2011) Mitochondrial fusion increases the mitochondrial DNA copy number in budding yeast. Genes Cells 16(5):527–544

    PubMed  CAS  Google Scholar 

  • Huang P, Galloway CA, Yoon Y (2011a) Control of mitochondrial morphology through differential interactions of mitochondrial fusion and fission proteins. PLoS One 6(5):e20655

    PubMed  CAS  Google Scholar 

  • Huang C et al (2011b) Preconditioning involves selective mitophagy mediated by Parkin and p62/SQSTM1. PLoS One 6(6):e20975

    PubMed  CAS  Google Scholar 

  • Hyde BB, Twig G, Shirihai OS (2010) Organellar vs cellular control of mitochondrial dynamics. Semin Cell Dev Biol 21(6):575–581

    PubMed  CAS  Google Scholar 

  • Irrcher I et al (2010) Loss of the Parkinson’s disease-linked gene DJ-1 perturbs mitochondrial dynamics. Hum Mol Genet 19(19):3734–3746

    PubMed  CAS  Google Scholar 

  • Ishihara N, Eura Y, Mihara K (2004) Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity. J Cell Sci 117(Pt 26):6535–6546

    PubMed  CAS  Google Scholar 

  • Ishihara N et al (2009) Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nat Cell Biol 11(8):958–966

    PubMed  CAS  Google Scholar 

  • Jakobs S (2006) High resolution imaging of live mitochondria. Biochim Biophys Acta 1763(5–6):561–575

    PubMed  CAS  Google Scholar 

  • Jakobs S, Schauss AC, Hell SW (2003) Photoconversion of matrix targeted GFP enables analysis of continuity and intermixing of the mitochondrial lumen. FEBS Lett 554(1–2):194–200

    PubMed  CAS  Google Scholar 

  • James DI et al (2003) hFis1, a novel component of the mammalian mitochondrial fission machinery. J Biol Chem 278(38):36373–36379

    PubMed  CAS  Google Scholar 

  • Jin SM et al (2010) Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J Cell Biol 191(5):933–942

    PubMed  CAS  Google Scholar 

  • Jourdain I, Gachet Y, Hyams JS (2009) The dynamin related protein Dnm1 fragments mitochondria in a microtubule-dependent manner during the fission yeast cell cycle. Cell Motil Cytoskeleton 66(8):509–523

    PubMed  CAS  Google Scholar 

  • Jung HS, Lee MS (2009) Macroautophagy in homeostasis of pancreatic beta-cell. Autophagy 5(2):241–243

    PubMed  CAS  Google Scholar 

  • Kaddour-Djebbar I et al (2010) Specific mitochondrial calcium overload induces mitochondrial fission in prostate cancer cells. Int J Oncol 36(6):1437–1444

    PubMed  CAS  Google Scholar 

  • Kane LA, Youle RJ (2010) Mitochondrial fission and fusion and their roles in the heart. J Mol Med (Berl) 88(10):971–979

    Google Scholar 

  • Karbowski M (2010) Mitochondria on guard: role of mitochondrial fusion and fission in the regulation of apoptosis. Adv Exp Med Biol 687:131–142

    PubMed  CAS  Google Scholar 

  • Karbowski M et al (2002) Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis. J Cell Biol 159(6):931–938

    PubMed  CAS  Google Scholar 

  • Karbowski M et al (2004a) Quantitation of mitochondrial dynamics by photolabeling of individual organelles shows that mitochondrial fusion is blocked during the Bax activation phase of ­apoptosis. J Cell Biol 164(4):493–499

    PubMed  CAS  Google Scholar 

  • Karbowski M, Jeong SY, Youle RJ (2004b) Endophilin B1 is required for the maintenance of mitochondrial morphology. J Cell Biol 166(7):1027–1039

    PubMed  CAS  Google Scholar 

  • Kashatus DF et al (2011) RALA and RALBP1 regulate mitochondrial fission at mitosis. Nat Cell Biol 13(9):1108–1115

    PubMed  CAS  Google Scholar 

  • Kieper N et al (2010) Modulation of mitochondrial function and morphology by interaction of Omi/HtrA2 with the mitochondrial fusion factor OPA1. Exp Cell Res 316(7):1213–1224

    PubMed  CAS  Google Scholar 

  • Kim AJ, Lee CS, Schlessinger D (2004) Bex3 associates with replicating mitochondria and is involved in possible growth control of F9 teratocarcinoma cells. Gene 343(1):79–89

    PubMed  CAS  Google Scholar 

  • Kim RH et al (2005) Hypersensitivity of DJ-1-deficient mice to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine (MPTP) and oxidative stress. Proc Natl Acad Sci USA 102(14):5215–5220

    PubMed  CAS  Google Scholar 

  • Kim H et al (2011) Fine-tuning of Drp1/Fis1 availability by AKAP121/Siah2 regulates mitochondrial adaptation to hypoxia. Mol Cell 44(4):532–544

    PubMed  CAS  Google Scholar 

  • Kimura T et al (2011) Autophagy protects the proximal tubule from degeneration and acute ­ischemic injury. J Am Soc Nephrol 22(5):902–913

    PubMed  CAS  Google Scholar 

  • Kitada T et al (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392(6676):605–608

    PubMed  CAS  Google Scholar 

  • Koch A et al (2005) A role for Fis1 in both mitochondrial and peroxisomal fission in mammalian cells. Mol Biol Cell 16(11):5077–5086

    PubMed  CAS  Google Scholar 

  • Kong D et al (2005) Regulation of Ca2+-induced permeability transition by Bcl-2 is antagonized by Drpl and hFis1. Mol Cell Biochem 272(1–2):187–199

    PubMed  CAS  Google Scholar 

  • Koshiba T et al (2004) Structural basis of mitochondrial tethering by mitofusin complexes. Science 305(5685):858–862

    PubMed  CAS  Google Scholar 

  • Krebiehl G et al (2010) Reduced basal autophagy and impaired mitochondrial dynamics due to loss of Parkinson’s disease-associated protein DJ-1. PLoS One 5(2):e9367

    PubMed  Google Scholar 

  • Landes T, Martinou JC (2011) Mitochondrial outer membrane permeabilization during apoptosis: the role of mitochondrial fission. Biochim Biophys Acta 1813(4):540–545

    PubMed  CAS  Google Scholar 

  • Landes T et al (2010) OPA1 (dys)functions. Semin Cell Dev Biol 21(6):593–598

    PubMed  CAS  Google Scholar 

  • Lee YJ et al (2004) Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol Biol Cell 15(11):5001–5011

    PubMed  CAS  Google Scholar 

  • Lee JY et al (2010) Disease-causing mutations in parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy. J Cell Biol 189(4):671–679

    PubMed  CAS  Google Scholar 

  • Lee Y et al (2011a) Mitochondrial autophagy by Bnip3 involves Drp1-mediated mitochondrial fission and recruitment of Parkin in cardiac myocytes. Am J Physiol Heart Circ Physiol 301(5):H1924–H1931

    PubMed  CAS  Google Scholar 

  • Lee HM et al (2011b) Autophagy negatively regulates keratinocyte inflammatory responses via scaffolding protein p62/SQSTM1. J Immunol 186(2):1248–1258

    PubMed  CAS  Google Scholar 

  • Lee JS et al (2012) Histone deacetylase inhibitors induce mitochondrial elongation. J Cell Physiol 227(7):2856–2869

    Google Scholar 

  • Legesse-Miller A, Massol RH, Kirchhausen T (2003) Constriction and Dnm1p recruitment are distinct processes in mitochondrial fission. Mol Biol Cell 14(5):1953–1963

    PubMed  CAS  Google Scholar 

  • Legros F et al (2002) Mitochondrial fusion in human cells is efficient, requires the inner membrane potential, and is mediated by mitofusins. Mol Biol Cell 13(12):4343–4354

    PubMed  CAS  Google Scholar 

  • Legros F et al (2004) Organization and dynamics of human mitochondrial DNA. J Cell Sci 117(13):2653–2662

    PubMed  CAS  Google Scholar 

  • Lewis MR, Lewis WH (1914) Mitochondria in tissue culture. Science 39(1000):330–333

    PubMed  CAS  Google Scholar 

  • Li J et al (2010) miR-30 regulates mitochondrial fission through targeting p53 and the dynamin-related protein-1 pathway. PLoS Genet 6(1):e1000795

    PubMed  Google Scholar 

  • Liesa M et al (2008) Mitochondrial fusion is increased by the nuclear coactivator PGC-1beta. PLoS One 3(10):e3613

    PubMed  Google Scholar 

  • Liu W et al (2009) PINK1 defect causes mitochondrial dysfunction, proteasomal deficit and alpha-synuclein aggregation in cell culture models of Parkinson’s disease. PLoS One 4(2):e4597

    PubMed  Google Scholar 

  • Liu W et al (2011) Pink1 regulates the oxidative phosphorylation machinery via mitochondrial fission. Proc Natl Acad Sci USA 108(31):12920–12924

    PubMed  CAS  Google Scholar 

  • Loew LM et al (1993) Imaging in five dimensions: time-dependent membrane potentials in individual mitochondria. Biophys J 65(6):2396–2407

    PubMed  CAS  Google Scholar 

  • Lucking CB et al (2000) Association between early-onset Parkinson’s disease and mutations in the parkin gene. N Engl J Med 342(21):1560–1567

    PubMed  CAS  Google Scholar 

  • Macaskill AF et al (2009) Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses. Neuron 61(4):541–555

    PubMed  CAS  Google Scholar 

  • MacAskill AF, Atkin TA, Kittler JT (2010) Mitochondrial trafficking and the provision of energy and calcium buffering at excitatory synapses. Eur J Neurosci 32(2):231–240

    PubMed  Google Scholar 

  • Malka F et al (2005) Separate fusion of outer and inner mitochondrial membranes. EMBO Rep 6(9):853–859

    PubMed  CAS  Google Scholar 

  • Marongiu R et al (2009) Mutant Pink1 induces mitochondrial dysfunction in a neuronal cell model of Parkinson’s disease by disturbing calcium flux. J Neurochem 108(6):1561–1574

    PubMed  CAS  Google Scholar 

  • Matsuda W et al (2009) Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. J Neurosci 29(2):444–453

    PubMed  CAS  Google Scholar 

  • Mazzoni C, Falcone C (2011) The importance of mitochondrial fusion in aging. Cell Cycle 10(21):3631

    PubMed  CAS  Google Scholar 

  • Meeusen S et al (2006) Mitochondrial inner-membrane fusion and crista maintenance requires the dynamin-related GTPase Mgm1. Cell 127(2):383–395

    PubMed  CAS  Google Scholar 

  • Mendl N et al (2011) Mitophagy in yeast is independent of mitochondrial fission and requires the stress response gene WHI2. J Cell Sci 124(Pt 8):1339–1350

    PubMed  CAS  Google Scholar 

  • Menzies FM, Yenisetti SC, Min KT (2005) Roles of Drosophila DJ-1 in survival of dopaminergic neurons and oxidative stress. Curr Biol 15(17):1578–1582

    PubMed  CAS  Google Scholar 

  • Merkwirth C et al (2008) Prohibitins control cell proliferation and apoptosis by regulating OPA1-dependent cristae morphogenesis in mitochondria. Genes Dev 22(4):476–488

    PubMed  CAS  Google Scholar 

  • Meulener M et al (2005) Drosophila DJ-1 mutants are selectively sensitive to environmental toxins associated with Parkinson’s disease. Curr Biol 15(17):1572–1577

    PubMed  CAS  Google Scholar 

  • Miller KE, Sheetz MP (2004) Axonal mitochondrial transport and potential are correlated. J Cell Sci 117(Pt 13):2791–2804

    PubMed  CAS  Google Scholar 

  • Mills RD et al (2008) Biochemical aspects of the neuroprotective mechanism of PTEN-induced kinase-1 (PINK1). J Neurochem 105(1):18–33

    PubMed  CAS  Google Scholar 

  • Mironov SL (2009) Complexity of mitochondrial dynamics in neurons and its control by ADP produced during synaptic activity. Int J Biochem Cell Biol 41(10):2005–2014

    PubMed  CAS  Google Scholar 

  • Misko A et al (2010) Mitofusin 2 is necessary for transport of axonal mitochondria and interacts with the Miro/Milton complex. J Neurosci 30(12):4232–4240

    PubMed  CAS  Google Scholar 

  • Mizuno Y et al (2006) Progress in familial Parkinson’s disease. J Neural Transm Suppl 70: 191–204

    PubMed  CAS  Google Scholar 

  • Molina AJ, Shirihai OS (2009) Monitoring mitochondrial dynamics with photoactivatable ­[corrected] green fluorescent protein. Methods Enzymol 457:289–304

    PubMed  CAS  Google Scholar 

  • Molina AJ et al (2009) Mitochondrial networking protects beta-cells from nutrient-induced ­apoptosis. Diabetes 58(10):2303–2315

    PubMed  CAS  Google Scholar 

  • Moore DJ et al (2005) Association of DJ-1 and parkin mediated by pathogenic DJ-1 mutations and oxidative stress. Hum Mol Genet 14(1):71–84

    PubMed  CAS  Google Scholar 

  • Nakada K, Inoue K, Hayashi J (2001a) Interaction theory of mammalian mitochondria. Biochem Biophys Res Commun 288(4):743–746

    PubMed  CAS  Google Scholar 

  • Nakada K et al (2001b) Inter-mitochondrial complementation: mitochondria-specific system ­preventing mice from expression of disease phenotypes by mutant mtDNA. Nat Med 7(8):934–940

    PubMed  CAS  Google Scholar 

  • Narender T et al (2010) An unprecedented biogenetic-type chemical synthesis of 1(15–>11) abeotaxanes from normal taxanes. J Nat Prod 73(4):747–750

    PubMed  CAS  Google Scholar 

  • Narendra DP, Youle RJ (2011) Targeting mitochondrial dysfunction: role for PINK1 and Parkin in mitochondrial quality control. Antioxid Redox Signal 14(10):1929–1938

    PubMed  CAS  Google Scholar 

  • Narendra D et al (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183(5):795–803

    PubMed  CAS  Google Scholar 

  • Narendra D et al (2009) Parkin-induced mitophagy in the pathogenesis of Parkinson disease. Autophagy 5(5):706–708

    PubMed  CAS  Google Scholar 

  • Narendra DP et al (2010a) PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 8(1):e1000298

    PubMed  Google Scholar 

  • Narendra D et al (2010b) p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy 6(8):1090–1106

    PubMed  CAS  Google Scholar 

  • Neuspiel M et al (2005) Activated mitofusin 2 signals mitochondrial fusion, interferes with Bax activation, and reduces susceptibility to radical induced depolarization. J Biol Chem 280(26):25060–25070

    PubMed  CAS  Google Scholar 

  • Nisipeanu P et al (1999) Autosomal-recessive juvenile parkinsonism in a Jewish Yemenite ­kindred: mutation of Parkin gene. Neurology 53(7):1602–1604

    PubMed  CAS  Google Scholar 

  • Nisipeanu P et al (2001) Parkin gene causing benign autosomal recessive juvenile parkinsonism. Neurology 56(11):1573–1575

    PubMed  CAS  Google Scholar 

  • Nochez Y et al (2009) Acute and late-onset optic atrophy due to a novel OPA1 mutation leading to a mitochondrial coupling defect. Mol Vis 15:598–608

    PubMed  CAS  Google Scholar 

  • Ohno N et al (2011) Myelination and axonal electrical activity modulate the distribution and motility of mitochondria at CNS nodes of Ranvier. J Neurosci 31(20):7249–7258

    PubMed  CAS  Google Scholar 

  • Okatsu K et al (2010) p62/SQSTM1 cooperates with Parkin for perinuclear clustering of depolarized mitochondria. Genes Cells 15(8):887–900

    PubMed  CAS  Google Scholar 

  • Olichon A et al (2007) OPA1 alternate splicing uncouples an evolutionary conserved function in mitochondrial fusion from a vertebrate restricted function in apoptosis. Cell Death Differ 14(4):682–692

    PubMed  CAS  Google Scholar 

  • Oliveira JM (2010) Mitochondrial bioenergetics and dynamics in Huntington’s disease: tripartite synapses and selective striatal degeneration. J Bioenerg Biomembr 42(3):227–234

    PubMed  CAS  Google Scholar 

  • Oliveri RL et al (2001) The parkin gene is not involved in late-onset Parkinson’s disease. Neurology 57(2):359–362

    PubMed  CAS  Google Scholar 

  • Ono T et al (2001) Human cells are protected from mitochondrial dysfunction by complementation of DNA products in fused mitochondria. Nat Genet 28(3):272–275

    PubMed  CAS  Google Scholar 

  • Otera H et al (2010) Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. J Cell Biol 191(6):1141–1158

    PubMed  CAS  Google Scholar 

  • Ouvrier R, Grew S (2010) Mechanisms of disease and clinical features of mutations of the gene for mitofusin 2: an important cause of hereditary peripheral neuropathy with striking clinical variability in children and adults. Dev Med Child Neurol 52(4):328–330

    PubMed  Google Scholar 

  • Parone PA et al (2008) Preventing mitochondrial fission impairs mitochondrial function and leads to loss of mitochondrial DNA. PLoS One 3(9):e3257

    PubMed  Google Scholar 

  • Partikian A et al (1998) Rapid diffusion of green fluorescent protein in the mitochondrial matrix. J Cell Biol 140(4):821–829

    PubMed  CAS  Google Scholar 

  • Paterna JC et al (2007) DJ-1 and Parkin modulate dopamine-dependent behavior and inhibit MPTP-induced nigral dopamine neuron loss in mice. Mol Ther 15(4):698–704

    PubMed  CAS  Google Scholar 

  • Patterson GH, Lippincott-Schwartz J (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297(5588):1873–1877

    PubMed  CAS  Google Scholar 

  • Poole AC et al (2008) The PINK1/Parkin pathway regulates mitochondrial morphology. Proc Natl Acad Sci USA 105(5):1638–1643

    PubMed  CAS  Google Scholar 

  • Poole AC et al (2010) The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/parkin pathway. PLoS One 5(4):e10054

    PubMed  Google Scholar 

  • Qi X et al (2011) Aberrant mitochondrial fission in neurons induced by protein kinase C{delta} under oxidative stress conditions in vivo. Mol Biol Cell 22(2):256–265

    PubMed  CAS  Google Scholar 

  • Rakovic A et al (2011) Mutations in PINK1 and Parkin impair ubiquitination of Mitofusins in human fibroblasts. PLoS One 6(3):e16746

    PubMed  CAS  Google Scholar 

  • Rambold AS, Kostelecky B, Lippincott-Schwartz J (2011) Together we are stronger: fusion protects mitochondria from autophagosomal degradation. Autophagy 7(12):1568–1569

    Google Scholar 

  • Rambold AS et al (2011b) Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc Natl Acad Sci USA 108(25):10190–10195

    PubMed  CAS  Google Scholar 

  • Rice SE, Gelfand VI (2006) Paradigm lost: milton connects kinesin heavy chain to miro on mitochondria. J Cell Biol 173(4):459–461

    PubMed  CAS  Google Scholar 

  • Russo GJ et al (2009) Drosophila Miro is required for both anterograde and retrograde axonal mitochondrial transport. J Neurosci 29(17):5443–5455

    PubMed  CAS  Google Scholar 

  • Santel A, Frank S (2008) Shaping mitochondria: the complex posttranslational regulation of the mitochondrial fission protein DRP1. IUBMB Life 60(7):448–455

    PubMed  CAS  Google Scholar 

  • Saotome M et al (2008) Bidirectional Ca2+-dependent control of mitochondrial dynamics by the Miro GTPase. Proc Natl Acad Sci USA 105(52):20728–20733

    PubMed  CAS  Google Scholar 

  • Scarpulla RC (2002a) Nuclear activators and coactivators in mammalian mitochondrial biogenesis. Biochim Biophys Acta 1576(1–2):1–14

    PubMed  CAS  Google Scholar 

  • Scarpulla RC (2002b) Transcriptional activators and coactivators in the nuclear control of mitochondrial function in mammalian cells. Gene 286(1):81–89

    PubMed  CAS  Google Scholar 

  • Schauss AC et al (2010) A novel cell-free mitochondrial fusion assay amenable for high-throughput screenings of fusion modulators. BMC Biol 8:100

    PubMed  Google Scholar 

  • Scorrano L (2005) Proteins that fuse and fragment mitochondria in apoptosis: con-fissing a deadly con-fusion? J Bioenerg Biomembr 37(3):165–170

    PubMed  CAS  Google Scholar 

  • Semenzato M, Cogliati S, Scorrano L (2011) Prohibitin(g) cancer: aurilide and killing by Opa1-dependent cristae remodeling. Chem Biol 18(1):8–9

    PubMed  CAS  Google Scholar 

  • Serasinghe MN, Yoon Y (2008) The mitochondrial outer membrane protein hFis1 regulates mitochondrial morphology and fission through self-interaction. Exp Cell Res 314(19):3494–3507

    PubMed  CAS  Google Scholar 

  • Shaw JM, Nunnari J (2002) Mitochondrial dynamics and division in budding yeast. Trends Cell Biol 12(4):178–184

    PubMed  CAS  Google Scholar 

  • Sheridan C, Martin SJ (2010) Mitochondrial fission/fusion dynamics and apoptosis. Mitochondrion 10(6):640–648

    PubMed  CAS  Google Scholar 

  • Sheridan C et al (2008) Bax- or Bak-induced mitochondrial fission can be uncoupled from cytochrome C release. Mol Cell 31(4):570–585

    PubMed  CAS  Google Scholar 

  • Shitara H et al (2000) Selective and continuous elimination of mitochondria microinjected into mouse eggs from spermatids, but not from liver cells, occurs throughout embryogenesis. Genetics 156(3):1277–1284

    PubMed  CAS  Google Scholar 

  • Shroff EH et al (2009) BH3 peptides induce mitochondrial fission and cell death independent of BAX/BAK. PLoS One 4(5):e5646

    PubMed  Google Scholar 

  • Skulachev VP (2001) Mitochondrial filaments and clusters as intracellular power-transmitting cables. Trends Biochem Sci 26(1):23–29

    PubMed  CAS  Google Scholar 

  • Song Z et al (2007) OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L. J Cell Biol 178(5):749–755

    PubMed  CAS  Google Scholar 

  • Song Z et al (2009) Mitofusins and OPA1 mediate sequential steps in mitochondrial membrane fusion. Mol Biol Cell 20(15):3525–3532

    PubMed  CAS  Google Scholar 

  • Soriano FX et al (2006) Evidence for a mitochondrial regulatory pathway defined by peroxisome proliferator-activated receptor-gamma coactivator-1 alpha, estrogen-related receptor-alpha, and mitofusin 2. Diabetes 55(6):1783–1791

    PubMed  CAS  Google Scholar 

  • Sulzer D (2007) Multiple hit hypotheses for dopamine neuron loss in Parkinson’s disease. Trends Neurosci 30(5):244–250

    PubMed  CAS  Google Scholar 

  • Surmeier DJ, Guzman JN, Sanchez-Padilla J (2010a) Calcium, cellular aging, and selective neuronal vulnerability in Parkinson’s disease. Cell Calcium 47(2):175–182

    PubMed  CAS  Google Scholar 

  • Surmeier DJ et al (2010b) What causes the death of dopaminergic neurons in Parkinson’s disease? Prog Brain Res 183:59–77

    PubMed  CAS  Google Scholar 

  • Taguchi N et al (2007) Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J Biol Chem 282(15):11521–11529

    PubMed  CAS  Google Scholar 

  • Taira T et al (2004) DJ-1 has a role in antioxidative stress to prevent cell death. EMBO Rep 5(2):213–218

    PubMed  CAS  Google Scholar 

  • Takano-Ohmuro H et al (2000) Autophagy in embryonic erythroid cells: its role in maturation. Eur J Cell Biol 79(10):759–764

    PubMed  CAS  Google Scholar 

  • Tan AR et al (2011) Elevated intracellular calcium causes distinct mitochondrial remodelling and calcineurin-dependent fission in astrocytes. Cell Calcium 49(2):108–114

    PubMed  CAS  Google Scholar 

  • Tanaka A (2010) Parkin-mediated selective mitochondrial autophagy, mitophagy: Parkin purges damaged organelles from the vital mitochondrial network. FEBS Lett 584(7):1386–1392

    PubMed  CAS  Google Scholar 

  • Tanaka A et al (2010a) Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J Cell Biol 191(7):1367–1380

    PubMed  CAS  Google Scholar 

  • Tanaka K, Matsuda N, Okatsu K (2010b) Mechanisms underlying the cause of Parkinson’s disease: the functions of Parkin/PINK1. Rinsho Shinkeigaku 50(11):867

    PubMed  Google Scholar 

  • Taneike M et al (2010) Inhibition of autophagy in the heart induces age-related cardiomyopathy. Autophagy 6(5):600–606

    Google Scholar 

  • Terman A et al (2010) Mitochondrial turnover and aging of long-lived postmitotic cells: the mitochondrial-lysosomal axis theory of aging. Antioxid Redox Signal 12(4):503–535

    PubMed  CAS  Google Scholar 

  • Thomas KJ, Cookson MR (2009) The role of PTEN-induced kinase 1 in mitochondrial dysfunction and dynamics. Int J Biochem Cell Biol 41(10):2025–2035

    PubMed  CAS  Google Scholar 

  • Thomas KJ et al (2011) DJ-1 acts in parallel to the PINK1/parkin pathway to control mitochondrial function and autophagy. Hum Mol Genet 20(1):40–50

    PubMed  CAS  Google Scholar 

  • Twig G, Shirihai OS (2011) The interplay between mitochondrial dynamics and mitophagy. Antioxid Redox Signal 14(10):1939–1951

    PubMed  CAS  Google Scholar 

  • Twig G et al (2006) Tagging and tracking individual networks within a complex mitochondrial web with photoactivatable GFP. Am J Physiol Cell Physiol 291(1):C176–C184

    PubMed  CAS  Google Scholar 

  • Twig G et al (2008a) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27(2):433–446

    PubMed  CAS  Google Scholar 

  • Twig G, Hyde B, Shirihai OS (2008b) Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view. Biochim Biophys Acta 1777(9):1092–1097

    PubMed  CAS  Google Scholar 

  • Twig G et al (2010) Biophysical properties of mitochondrial fusion events in pancreatic beta-cells and cardiac cells unravel potential control mechanisms of its selectivity. Am J Physiol Cell Physiol 299(2):C477–C487

    PubMed  CAS  Google Scholar 

  • Van Laar VS et al (2011) Bioenergetics of neurons inhibit the translocation response of Parkin following rapid mitochondrial depolarization. Hum Mol Genet 20(5):927–940

    PubMed  Google Scholar 

  • Ved R et al (2005) Similar patterns of mitochondrial vulnerability and rescue induced by genetic modification of alpha-synuclein, parkin, and DJ-1 in Caenorhabditis elegans. J Biol Chem 280(52):42655–42668

    PubMed  CAS  Google Scholar 

  • Vives-Bauza C, Przedborski S (2010) PINK1 points Parkin to mitochondria. Autophagy 6(5):674–675

    Google Scholar 

  • Vives-Bauza C et al (2010a) PINK1/Parkin direct mitochondria to autophagy. Autophagy 6(2):315–316

    PubMed  CAS  Google Scholar 

  • Vives-Bauza C et al (2010b) Control of mitochondrial integrity in Parkinson’s disease. Prog Brain Res 183:99–113

    PubMed  CAS  Google Scholar 

  • Vives-Bauza C et al (2010c) PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci USA 107(1):378–383

    PubMed  CAS  Google Scholar 

  • Wang X, Schwarz TL (2009a) Imaging axonal transport of mitochondria. Methods Enzymol 457:319–333

    PubMed  CAS  Google Scholar 

  • Wang X, Schwarz TL (2009b) The mechanism of Ca2+-dependent regulation of kinesin-mediated mitochondrial motility. Cell 136(1):163–174

    PubMed  CAS  Google Scholar 

  • Wang W et al (2010) Mitofusin-2 is a novel direct target of p53. Biochem Biophys Res Commun 400(4):587–592

    PubMed  CAS  Google Scholar 

  • Wang H et al (2011a) Parkin ubiquitinates Drp1 for proteasome-dependent degradation: implication of dysregulated mitochondrial dynamics in Parkinson disease. J Biol Chem 286(13):11649–11658

    PubMed  CAS  Google Scholar 

  • Wang X et al (2011b) PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 147(4):893–906

    PubMed  CAS  Google Scholar 

  • Wang JX et al (2011c) miR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1. Nat Med 17(1):71–78

    PubMed  Google Scholar 

  • Weihofen A et al (2009) Pink1 forms a multiprotein complex with Miro and Milton, linking Pink1 function to mitochondrial trafficking. Biochemistry 48(9):2045–2052

    PubMed  CAS  Google Scholar 

  • Westermann B (2010) Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol 11(12):872–884

    PubMed  CAS  Google Scholar 

  • Whitworth AJ, Pallanck LJ (2009) The PINK1/Parkin pathway: a mitochondrial quality control system? J Bioenerg Biomembr 41(6):499–503

    PubMed  CAS  Google Scholar 

  • Wikstrom JD et al (2007) beta-Cell mitochondria exhibit membrane potential heterogeneity that can be altered by stimulatory or toxic fuel levels. Diabetes 56(10):2569–2578

    PubMed  CAS  Google Scholar 

  • Wikstrom JD, Twig G, Shirihai OS (2009) What can mitochondrial heterogeneity tell us about mitochondrial dynamics and autophagy? Int J Biochem Cell Biol 41(10):1914–1927

    PubMed  CAS  Google Scholar 

  • Wilkerson DC, Sankar U (2011) Mitochondria: a sulfhydryl oxidase and fission GTPase connect mitochondrial dynamics with pluripotency in embryonic stem cells. Int J Biochem Cell Biol 43(9):1252–1256

    PubMed  CAS  Google Scholar 

  • Wood-Kaczmar A et al (2008) PINK1 is necessary for long term survival and mitochondrial function in human dopaminergic neurons. PLoS One 3(6):e2455

    PubMed  Google Scholar 

  • Wu S et al (2011) Bax is essential for Drp1-mediated mitochondrial fission but not for mitochondrial outer membrane permeabilization caused by photodynamic therapy. J Cell Physiol 226(2):530–541

    PubMed  CAS  Google Scholar 

  • Xiong H et al (2009) Parkin, PINK1, and DJ-1 form a ubiquitin E3 ligase complex promoting unfolded protein degradation. J Clin Invest 119(3):650–660

    PubMed  CAS  Google Scholar 

  • Yang Y et al (2008) Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery. Proc Natl Acad Sci USA 105(19):7070–7075

    PubMed  CAS  Google Scholar 

  • Yi M, Weaver D, Hajnoczky G (2004) Control of mitochondrial motility and distribution by the calcium signal: a homeostatic circuit. J Cell Biol 167(4):661–672

    PubMed  CAS  Google Scholar 

  • Yoon Y et al (2003) The mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1. Mol Cell Biol 23(15):5409–5420

    PubMed  CAS  Google Scholar 

  • Yu T et al (2005) Regulation of mitochondrial fission and apoptosis by the mitochondrial outer membrane protein hFis1. J Cell Sci 118(Pt 18):4141–4151

    PubMed  CAS  Google Scholar 

  • Yue Z (2007) Regulation of neuronal autophagy in axon: implication of autophagy in axonal ­function and dysfunction/degeneration. Autophagy 3(2):139–141

    PubMed  CAS  Google Scholar 

  • Yue Z et al (2009) The cellular pathways of neuronal autophagy and their implication in neurodegenerative diseases. Biochim Biophys Acta 1793(9):1496–1507

    PubMed  CAS  Google Scholar 

  • Yu-Wai-Man P et al (2010) OPA1 mutations cause cytochrome c oxidase deficiency due to loss of wild-type mtDNA molecules. Hum Mol Genet 19(15):3043–3052

    PubMed  CAS  Google Scholar 

  • Yu-Wai-Man P, Griffiths PG, Chinnery PF (2011a) Mitochondrial optic neuropathies – disease mechanisms and therapeutic strategies. Prog Retin Eye Res 30(2):81–114

    PubMed  CAS  Google Scholar 

  • Yu-Wai-Man P et al (2011b) Genetic screening for OPA1 and OPA3 mutations in patients with suspected inherited optic neuropathies. Ophthalmology 118(3):558–563

    PubMed  Google Scholar 

  • Zhang Y, Chan DC (2007) Structural basis for recruitment of mitochondrial fission complexes by Fis1. Proc Natl Acad Sci USA 104(47):18526–18530

    PubMed  CAS  Google Scholar 

  • Zhang L et al (2005) Mitochondrial localization of the Parkinson’s disease related protein DJ-1: implications for pathogenesis. Hum Mol Genet 14(14):2063–2073

    PubMed  CAS  Google Scholar 

  • Zhang J et al (2010) G-protein beta2 subunit interacts with mitofusin 1 to regulate mitochondrial fusion. Nat Commun 1:101

    PubMed  Google Scholar 

  • Ziviani E, Whitworth AJ (2010) How could Parkin-mediated ubiquitination of mitofusin promote mitophagy? Autophagy 6(5):660–662

    PubMed  Google Scholar 

  • Ziviani E, Tao RN, Whitworth AJ (2010) Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proc Natl Acad Sci USA 107(11):5018–5023

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orian Shirihai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ferree, A., Shirihai, O. (2012). Mitochondrial Dynamics: The Intersection of Form and Function. In: Kadenbach, B. (eds) Mitochondrial Oxidative Phosphorylation. Advances in Experimental Medicine and Biology, vol 748. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3573-0_2

Download citation

Publish with us

Policies and ethics