Skip to main content

Quantitative Analysis of Polyphosphoinositide, Bis(monoacylglycero)phosphate, and Phosphatidylglycerol Species by Shotgun Lipidomics After Methylation

  • Protocol
  • First Online:
Mass Spectrometry-Based Lipidomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2306))

Abstract

Phospholipids play important roles in biological process even at a very low level. For example, bis(monoacylglycerol)phosphate (BMP) is involved in the pathogenesis of lysosomal storage diseases, and polyphosphoinositides (PPI) play critical roles in cellular signaling and functions. Phosphatidylglycerol (PG), a structural isomer of BMP, mediates lipid–protein and lipid–lipid interactions, and inhibits platelet activating factor and phosphatidylcholine transferring. However, due to their low abundance, the analysis of these phospholipids from biological samples is technically challenging. Therefore, the cellular function and metabolism of these phospholipids are still elusive. This chapter overviews a novel method of shotgun lipidomics after methylation with trimethylsilyl-diazomethane (TMS-D) for accurate and comprehensive analysis of these phospholipid species in biological samples. Firstly, a modified Bligh and Dyer procedure is performed to extract tissue lipids for PPI analysis, whereas modified methyl-tert-butylether (MTBE) extraction and modified Folch extraction methods are described to extract tissue lipids for PPI analysis. Secondly, TMS-D methylation is performed to derivatize PG/BMP and PPI, respectively. Then, we described the shotgun lipidomics strategies that can be used as cost-effective and relatively high-throughput methods to determine BMP, PG, and PPI species and isomers with different phosphate position(s) and fatty acyl chains. The described method of shotgun lipidomics after methylation achieves feasible and reliable quantitative analysis of low-abundance lipid classes. The application of this novel method should enable us to reveal the metabolism and functions of these phospholipids in healthy and disease states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fahy E et al (2005) A comprehensive classification system for lipids. J Lipid Res 46(5):839–861

    Article  CAS  PubMed  Google Scholar 

  2. Han X (2016) Lipidomics: comprehensive mass spectrometry of lipids/Xianlin Han. John Wiley & Sons, Inc., Hoboken, NJ

    Book  Google Scholar 

  3. Wang C, Wang M, Han X (2015) Comprehensive and quantitative analysis of lysophospholipid molecular species present in obese mouse liver by shotgun lipidomics. Anal Chem 87(9):4879–4887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Han X, Gross RW (2003) Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics. J Lipid Res 44(6):1071–1079

    Article  CAS  PubMed  Google Scholar 

  5. Wang M et al (2017) Strategy for quantitative analysis of isomeric bis(monoacylglycero)phosphate and phosphatidylglycerol species by shotgun lipidomics after one-step methylation. Anal Chem 89(16):8490–8495

    Article  CAS  PubMed  Google Scholar 

  6. Wang C et al (2016) Comprehensive and quantitative analysis of polyphosphoinositide species by shotgun lipidomics revealed their alterations in db/db mouse brain. Anal Chem 88(24):12137–12144

    Article  CAS  PubMed  Google Scholar 

  7. Li L et al (2015) Ultra-high-performance liquid chromatography electrospray ionization tandem mass spectrometry for accurate analysis of glycerophospholipids and sphingolipids in drug resistance tumor cells. J Chromatogr A 1381:140–148

    Article  CAS  PubMed  Google Scholar 

  8. Clark J et al (2011) Quantification of PtdInsP3 molecular species in cells and tissues by mass spectrometry. Nat Methods 8(3):267–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kobayashi T et al (1998) A lipid associated with the antiphospholipid syndrome regulates endosome structure and function. Nature 392(6672):193–197

    Article  CAS  PubMed  Google Scholar 

  10. Harder A, Widjaja F, Debuch H (1984) Studies on lipids from liver and spleen of a child (O.L.) with Niemann-Pick’s disease type C. J Clin Chem Clin Biochem 22(2):199–201

    CAS  PubMed  Google Scholar 

  11. Hein LK, Duplock S, Fuller M (2013) Selective reduction of bis(monoacylglycero)phosphate ameliorates the storage burden in a THP-1 macrophage model of Gaucher disease. J Lipid Res 54(6):1691–1697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kahma K et al (1976) Low and moderate concentrations of lysobisphosphatidic acid in brain and liver of patients affected by some storage diseases. Lipids 11(7):539–544

    Article  CAS  PubMed  Google Scholar 

  13. Vanier MT (1983) Biochemical studies in Niemann-Pick disease. I. Major sphingolipids of liver and spleen. Biochim Biophys Acta 750(1):178–184

    Article  CAS  PubMed  Google Scholar 

  14. Tengstrand EA, Miwa GT, Hsieh FY (2010) Bis(monoacylglycerol)phosphate as a non-invasive biomarker to monitor the onset and time-course of phospholipidosis with drug-induced toxicities. Expert Opin Drug Metab Toxicol 6(5):555–570

    Article  CAS  PubMed  Google Scholar 

  15. Kolter T, Sandhoff K (2005) Principles of lysosomal membrane digestion: stimulation of sphingolipid degradation by sphingolipid activator proteins and anionic lysosomal lipids. Annu Rev Cell Dev Biol 21:81–103

    Article  CAS  PubMed  Google Scholar 

  16. Hirai H, Natori S, Sekimizu K (1992) Reversal by phosphatidylglycerol and cardiolipin of inhibition of transcription and replication by histones in vitro. Arch Biochem Biophys 298(2):458–463

    Article  CAS  PubMed  Google Scholar 

  17. Murray NR, Fields AP (1998) Phosphatidylglycerol is a physiologic activator of nuclear protein kinase C. J Biol Chem 273(19):11514–11520

    Article  CAS  PubMed  Google Scholar 

  18. Lekka M et al (1993) Isolation of a phospholipid inhibitor of platelet activating factor-induced activity from perfused rat liver: identification as phosphatidylglycerol. Arch Biochem Biophys 302(2):380–384

    Article  CAS  PubMed  Google Scholar 

  19. Wirtz KW et al (1976) The protein-mediated transfer of phosphatidylcholine between membranes. The effect of membrane lipid composition and ionic composition of the medium. Eur J Biochem 61(2):515–523

    Article  CAS  PubMed  Google Scholar 

  20. Knittelfelder OL et al (2014) A versatile ultra-high performance LC-MS method for lipid profiling. J Chromatogr B Analyt Technol Biomed Life Sci 951–952:119–128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Meikle PJ et al (2008) Effect of lysosomal storage on bis(monoacylglycero)phosphate. Biochem J 411(1):71–78

    Article  CAS  PubMed  Google Scholar 

  22. Scherer M, Schmitz G, Liebisch G (2010) Simultaneous quantification of cardiolipin, bis(monoacylglycero)phosphate and their precursors by hydrophilic interaction LC-MS/MS including correction of isotopic overlap. Anal Chem 82(21):8794–8799

    Article  CAS  PubMed  Google Scholar 

  23. Boss WF, Im YJ (2012) Phosphoinositide signaling. Annu Rev Plant Biol 63:409–429

    Article  CAS  PubMed  Google Scholar 

  24. Michell RH (2013) Inositol lipids: from an archaeal origin to phosphatidylinositol 3,5-bisphosphate faults in human disease. FEBS J 280(24):6281–6294

    Article  CAS  PubMed  Google Scholar 

  25. Rudge SA, Wakelam MJ (2016) Phosphatidylinositolphosphate phosphatase activities and cancer. J Lipid Res 57(2):176–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sasaki T et al (2009) Mammalian phosphoinositide kinases and phosphatases. Prog Lipid Res 48(6):307–343

    Article  CAS  PubMed  Google Scholar 

  27. Di Paolo G, De Camilli P (2006) Phosphoinositides in cell regulation and membrane dynamics. Nature 443(7112):651–657

    Article  PubMed  CAS  Google Scholar 

  28. Ketel K et al (2016) A phosphoinositide conversion mechanism for exit from endosomes. Nature 529(7586):408–412

    Article  CAS  PubMed  Google Scholar 

  29. Skwarek LC, Boulianne GL (2009) Great expectations for PIP: phosphoinositides as regulators of signaling during development and disease. Dev Cell 16(1):12–20

    Article  CAS  PubMed  Google Scholar 

  30. Jones DR, Varela-Nieto I (1999) Diabetes and the role of inositol-containing lipids in insulin signaling. Mol Med 5(8):505–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pendaries C et al (2003) Phosphoinositide signaling disorders in human diseases. FEBS Lett 546(1):25–31

    Article  CAS  PubMed  Google Scholar 

  32. Guillou H, Stephens LR, Hawkins PT (2007) Quantitative measurement of phosphatidylinositol 3,4,5-trisphosphate. Methods Enzymol 434:117–130

    Article  CAS  PubMed  Google Scholar 

  33. Jones DR et al (2013) Measurement of phosphoinositides in the zebrafish Danio rerio. Nat Protoc 8(6):1058–1072

    Article  PubMed  CAS  Google Scholar 

  34. Cai T et al (2015) Profiling and relative quantitation of phosphoinositides by multiple precursor ion scanning based on phosphate methylation and isotopic labeling. Anal Chem 87(1):513–521

    Article  CAS  PubMed  Google Scholar 

  35. Haag M et al (2012) Quantification of signaling lipids by nano-electrospray ionization tandem mass spectrometry (Nano-ESI MS/MS). Metabolites 2(1):57–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kielkowska A et al (2014) A new approach to measuring phosphoinositides in cells by mass spectrometry. Adv Biol Regul 54:131–141

    Article  CAS  PubMed  Google Scholar 

  37. Milne SB et al (2005) A targeted mass spectrometric analysis of phosphatidylinositol phosphate species. J Lipid Res 46(8):1796–1802

    Article  CAS  PubMed  Google Scholar 

  38. Wenk MR et al (2003) Phosphoinositide profiling in complex lipid mixtures using electrospray ionization mass spectrometry. Nat Biotechnol 21(7):813–817

    Article  CAS  PubMed  Google Scholar 

  39. Oku N et al (2010) Isolation, structural elucidation, and absolute stereochemistry of enigmazole A, a cytotoxic phosphomacrolide from the Papua New Guinea marine sponge Cinachyrella enigmatica. J Am Chem Soc 132(30):10278–10285

    Article  CAS  PubMed  Google Scholar 

  40. Wang M et al (2016) Novel advances in shotgun lipidomics for biology and medicine. Prog Lipid Res 61:83–108

    Article  CAS  PubMed  Google Scholar 

  41. Yang K et al (2009) Automated lipid identification and quantification by multidimensional mass spectrometry-based shotgun lipidomics. Anal Chem 81(11):4356–4368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Matyash V et al (2008) Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J Lipid Res 49(5):1137–1146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226(1):497–509

    Article  CAS  PubMed  Google Scholar 

  44. Han X, Gross RW (2005) Shotgun lipidomics: multidimensional MS analysis of cellular lipidomes. Expert Rev Proteomics 2(2):253–264

    Article  CAS  PubMed  Google Scholar 

  45. Wang M, Wang C, Han X (2017) Selection of internal standards for accurate quantification of complex lipid species in biological extracts by electrospray ionization mass spectrometry—what, how and why? Mass Spectrom Rev 36(6):693–714

    Article  CAS  PubMed  Google Scholar 

  46. Wang M, Han RH, Han X (2013) Fatty acidomics: global analysis of lipid species containing a carboxyl group with a charge-remote fragmentation-assisted approach. Anal Chem 85(19):9312–9320

    Article  CAS  PubMed  Google Scholar 

  47. Han X (2016) Lipidomics for studying metabolism. Nat Rev Endocrinol 12(11):668–679

    Article  CAS  PubMed  Google Scholar 

  48. Han X et al (2006) Shotgun lipidomics of cardiolipin molecular species in lipid extracts of biological samples. J Lipid Res 47(4):864–879

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by National Institute of Aging Grant RF1 AG061872, National Institute of Neurological Disorders and Stroke Grant U54 NS110435, the institutional research funds from the University of Texas Health Science Center at San Antonio (UT Health SA), the Mass Spectrometry Core Facility at UT Health SA, and the Methodist Hospital Foundation.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pan, M., Qin, C., Han, X. (2021). Quantitative Analysis of Polyphosphoinositide, Bis(monoacylglycero)phosphate, and Phosphatidylglycerol Species by Shotgun Lipidomics After Methylation. In: Hsu, FF. (eds) Mass Spectrometry-Based Lipidomics. Methods in Molecular Biology, vol 2306. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1410-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1410-5_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1409-9

  • Online ISBN: 978-1-0716-1410-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics