Skip to main content

Analysis of Human Hyaluronan Synthase Gene Transcriptional Regulation and Downstream Hyaluronan Cell Surface Receptor Mobility in Myofibroblast Differentiation

  • Protocol
  • First Online:
Glycosaminoglycans

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2303))

Abstract

The ubiquitous extracellular glycosaminoglycan hyaluronan (HA) is a polymer composed of repeated disaccharide units of alternating D-glucuronic acid and D-N-acetylglucosamine residues linked via alternating β-1,4 and β-1,3 glycosidic bonds. Emerging data continue to reveal functions attributable to HA in a variety of physiological and pathological contexts. Defining the mechanisms regulating expression of the human hyaluronan synthase (HAS) genes that encode the corresponding HA-synthesizing HAS enzymes is therefore important in the context of HA biology in health and disease. We describe here methods to analyze transcriptional regulation of the HAS and HAS2-antisense RNA 1 genes. Elucidation of mechanisms of HA interaction with receptors such as the cell surface molecule CD44 is also key to understanding HA function. To this end, we provide protocols for fluorescent recovery after photobleaching analysis of CD44 membrane dynamics in the process of fibroblast to myofibroblast differentiation, a phenotypic transition that is common to the pathology of fibrosis of large organs such as the liver and kidney.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spicer AP, Seldin MF, Olsen AS et al (1997) Chromosomal localization of the human and mouse hyaluronan synthase genes. Genomics 41:493–497

    Article  CAS  PubMed  Google Scholar 

  2. Sayo T, Sugiyama Y, Takahashi Y et al (2002) Hyaluronan synthase 3 regulates hyaluronan synthesis in cultured human keratinocytes. J Investig Dermatol 118:43–48

    Article  CAS  PubMed  Google Scholar 

  3. Monslow J, Williams JD, Norton N et al (2003) The human hyaluronan synthase genes: genomic structures, proximal promoters and polymorphic microsatellite markers. Int J Biochem Cell Biol 35:1272–1283

    Article  CAS  PubMed  Google Scholar 

  4. Chao H, Spicer AP (2005) Natural antisense mRNAs to hyaluronan synthase 2 inhibit hyaluronan biosynthesis and cell proliferation. J Biol Chem 280:27513–27522

    Article  CAS  PubMed  Google Scholar 

  5. Dobzhansky T (1964) Biology, molecular and organismic. Am Zool 4:443–452

    Article  CAS  PubMed  Google Scholar 

  6. Weigel PH, DeAngelis PL (2007) Hyaluronan synthases: a decade-plus of novel glycosyltransferases. J Biol Chem 282:36777–36781

    Article  CAS  PubMed  Google Scholar 

  7. Weigel PH, Hascall VC, Tammi M (1997) Hyaluronan synthases. J Biol Chem 272:13997–14000

    Article  CAS  PubMed  Google Scholar 

  8. Itano N, Sawai T, Yoshida M et al (1999) Three isoforms of mammalian hyaluronan synthases have distinct enzymatic properties. J Biol Chem 274:25085–25092

    Article  CAS  PubMed  Google Scholar 

  9. Rilla K, Oikari S, Jokela TA et al (2013) Hyaluronan synthase 1 (HAS1) requires higher cellular UDP-GlcNAc concentration than HAS2 and HAS3. J Biol Chem 288:5973–5983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bart G, Ortega-Vico N, Hasinen A et al (2015) Fluorescence resonance energy transfer (FRET) and proximity ligation assays reveal functionally relevant homo- and heteromeric complexes among hyaluronan synthases HAS1, HAS2, and HAS3. J Biol Chem 290(18):11479–11490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Michael DR, Phillips AO, Krupa A et al (2011) The human hyaluronan synthase 2 (HAS2) gene and its natural antisense RNA exhibit coordinated expression in the renal proximal tubular epithelial cell. J Biol Chem 286:19523–19532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tammi RH, Passi AG, Rilla K (2011) Transcriptional and post-translational regulation of hyaluronan synthesis. FEBS J 278:1419–1428

    Article  CAS  PubMed  Google Scholar 

  13. Vigetti D, Viola M, Karousou E et al (2013) Metabolic control of hyaluronan synthases. Matrix Biol 35:8–13. https://doi.org/10.1016/j.matbio.2013.10.002

    Article  CAS  PubMed  Google Scholar 

  14. Caon I, Parnigoni A, Viola M et al (2020) Cell energy metabolism and hyaluronan synthesis. J Histochem Cytochem 69(1):35–47. https://doi.org/10.1369/0022155420929772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Melero-Fernandez de Mara RM, Arasu UT, Kärnä R et al (2019) Effects of mutations in the post-translational modification sites on the trafficking of hyaluronan synthase 2 (HAS2). Matrix Biol 80:85–103

    Article  Google Scholar 

  16. Yamada Y, Itano N, Hata K-I et al (2004) Differential regulation by IL-1beta and EGF of expression of three different hyaluronan synthases in oral mucosal epithelial cells and fibroblasts and dermal fibroblasts: quantitative analysis using real-time RT-PCR. J Investig Dermatol 122:631–639

    Article  CAS  PubMed  Google Scholar 

  17. Monslow J, Williams JD, Guy CA et al (2004) Identification and analysis of the promoter region of the human hyaluronan synthase 2 gene. J Biol Chem 279:20576–20581

    Article  CAS  PubMed  Google Scholar 

  18. Monslow J, Williams JD, Fraser DJ et al (2006) Sp1 and Sp3 mediate constitutive transcription of the human hyaluronan synthase 2 gene. J Biol Chem 281:18043–18050

    Article  CAS  PubMed  Google Scholar 

  19. Chen L, Neville RD, Michael DR et al (2012) Identification and analysis of the human hyaluronan synthase 1 gene promoter reveals Smad3- and Sp3-mediated transcriptional induction. Matrix Biol 31:373–379

    Article  PubMed  Google Scholar 

  20. Saavalainen K, Tammi MI, Bowen T et al (2007) Integration of the activation of the human hyaluronan synthase 2 gene promoter by common co-factors of the transcription factors RAR and NF-κB. J Biol Chem 282:11530–11539

    Article  CAS  PubMed  Google Scholar 

  21. Vigetti D, Deleonibus S, Moretto P et al (2014) Natural antisense transcript for Hyaluronan synthase 2 (HAS2-AS1) induces transcription of HAS2 via protein O-GlcNAcylation. J Biol Chem 289(4):28816–28826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Siiskonen H, Oikari S, Pasonen-Seppänen S et al (2015) Hyaluronan synthase 1: a mysterious enzyme with unexpected functions. Front Immunol 6:43

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cho S, Roh K, Park J et al (2017) Hydrolysis of hyaluronic acid in lymphedematous tissue alleviates fibrogenesis via TH1 cell-mediated cytokine expression. Sci Rep 7:35

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lauer-Fields JL, Malkar NB, Richet G et al (2003) Melanoma cell CD44 interaction with the alpha 1(IV) 1263-1277 region from basement membrane collagen is modulated by ligand glycosylation. J Biol Chem 278:14321–14330

    Article  CAS  PubMed  Google Scholar 

  25. Marrero-Diaz R, Bravo-Cordero JJ, Megías D et al (2009) Polarized MT1-MMP-CD44 interaction and CD44 cleavage during cell retraction reveal an essential role for MT1-MMP in CD44-mediated invasion. Cell Motil Cytoskeleton 66:48–61

    Article  CAS  PubMed  Google Scholar 

  26. Midgley AC, Rogers M, Hallet MB et al (2013) Transforming growth factor-β1 (TGF-β1)-stimulated fibroblast to myofibroblast differentiation is mediated by hyaluronan (HA)-facilitated epidermal growth factor receptor (EGFR) and CD44 co-localization in lipid rafts. J Biol Chem 288:14824–14838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Midgley AC, Duggal L, Jenkins R et al (2015) Hyaluronan regulates bone morphogenetic protein-7-dependent prevention and reversal of myofibroblast phenotype. J Biol Chem 290(18):11218–11234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Midgley AC, Oltean S, Hascall V et al (2017) Nuclear hyaluronidase 2 drives alternative splicing of CD44 pre-mRNA to determine profibrotic or antifibrotic cell phenotype. Sci Signal 10:eaao1822

    Article  PubMed  Google Scholar 

  29. Meran S, Luo DD, Simpson RM et al (2011) Hyaluronan facilitates transforming growth factor-beta1-dependent proliferation via CD44 and epidermal growth factor receptor interaction. J Biol Chem 286:17618–17630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Simpson RM, Wells A, Thomas DW et al (2010) Aging fibroblasts resist phenotypic maturation because of impaired hyaluronan-dependent CD44/epidermal growth factor receptor signaling. Am J Pathol 176:1215–1228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Webber J, Meran S, Steadman R et al (2009) Hyaluronan orchestrates transforming growth factor-beta1-dependent maintenance of myofibroblast phenotype. J Biol Chem 284:9083–9092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Martin J, Midgley A, Meran S et al (2016) Tumor necrosis factor-stimulated gene 6 (TSG-6)-mediated interactions with the inter-α-inhibitor heavy chain 5 facilitate transforming growth factor β1 (TGFβ1)-dependent fibroblast to myofibroblast differentiation. J Biol Chem 291:13789–13801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Midgley AC, Bowen T, Phillips AO et al (2014) MicroRNA-7 inhibition rescues age-associated loss of epidermmal growth factor receptor and hyaluronan-dependent differentiation in fibroblasts. Aging Cell 13:235–244

    Article  CAS  PubMed  Google Scholar 

  34. Untergasser A, Cutcutache I, Koressaar T et al (2012) Primer3-new capabilities and interfaces. Nucleic Acids Res 40:e115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Koressaar T, Remm M (2007) Enhancements and modifications of primer design program Primer3. Bioinformatics 23:1289–1291

    Article  CAS  PubMed  Google Scholar 

  36. Koressaar T, Lepamets M, Kaplinski L et al (2018) Primer3_masker: integrating masking of template sequence with primer design software. Bioinformatics 34:1937–1938

    Article  CAS  PubMed  Google Scholar 

  37. Bowen T, Williams NM, Norton N et al (2001) Mutation screening of the KCNN3 gene reveals a rare frameshift mutation. Mol Psychiatry 6:259–260

    Article  CAS  PubMed  Google Scholar 

  38. Axelrod D, Koppel DE, Schlessinger J et al (1976) Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J 16:1055–1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are supported by funding from Kidney Research UK, Medical Research Council UK, Wales Kidney Research Unit, Wellcome Trust, UCB Pharma and the National Natural Science Foundation of China (NSFC) International Young Scholar Research Fellowship (81850410552).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy Bowen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Midgley, A.C., Bowen, T. (2022). Analysis of Human Hyaluronan Synthase Gene Transcriptional Regulation and Downstream Hyaluronan Cell Surface Receptor Mobility in Myofibroblast Differentiation. In: Balagurunathan, K., Nakato, H., Desai, U., Saijoh, Y. (eds) Glycosaminoglycans. Methods in Molecular Biology, vol 2303. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1398-6_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1398-6_36

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1397-9

  • Online ISBN: 978-1-0716-1398-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics