Skip to main content

High-Efficiency Electroporation for Genetic Improvement of Fungal Strains

  • Protocol
  • First Online:
Antimicrobial Therapies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2296))

Abstract

Electroporation is a method for the introduction of molecules (usually nucleic acids) into a cell, consisting of submitting the cells to high-voltage and short electric pulses in the presence of the exogenous DNA/molecule. It is a versatile method, adaptable to different types of cells, from bacteria to cultured cells to higher eukaryotes, and thus has applications in many diverse fields, such as environmental biology, biotechnology, genetic engineering, and medicine. Electroporation has some advantages over other genetic transformation strategies, including the simplicity of the method, a wide range of adjustable parameters (possibility of optimization), high reproducibility and avoidance of the use of chemicals toxic to cells. Here we describe an optimized electroporation procedure for the industrially important fungus Acremonium chrysogenum, using germinated conidia and fragmented young mycelium. In both cases, the transformation efficiency was higher compared to the conventional polyethylene glycol (PEG)-mediated transformation of protoplasts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cohen SN, Chang AC, Hsu L (1972) Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc Natl Acad Sci U S A 69:2110–2114

    Article  CAS  Google Scholar 

  2. Ruiz-Diez B (2002) Strategies for the transformation of filamentous fungi. J Appl Microbiol 92:189–195

    Article  CAS  Google Scholar 

  3. Chakraborty BN (2014) Electroporation mediated DNA transformation of filamentous fungi. In: van den Berg MA, Maruthachalam K (eds) Genetic transformation systems in fungi, vol 1. Springer International Publishing, Cham, pp 67–79

    Google Scholar 

  4. Hashimoto H, Morikawa H, Yamada Y, Kimura A (1985) A novel method for transformation of intact yeast cells by electroinjection of plasmid DNA. Appl Microbiol Biotechnol 21:336–339

    Article  CAS  Google Scholar 

  5. Delorme E (1989) Transformation of Saccharomyces cerevisiae by electroporation. Appl Environ Microbiol 55:2242–2246

    Article  CAS  Google Scholar 

  6. Richey MG, Marek ET, Schardl CL, Smith DA (1989) Transformation of filamentous fungi with plasmid DNA by electroporation. Phytopathology 79:844–847

    Article  CAS  Google Scholar 

  7. Tsai HF, Siegel MR, Schardl CL (1992) Transformation of Acremonium coenophialum, a protective fungal symbiont of the grass Festuca arundinacea. Curr Genet 22:399–406

    Article  CAS  Google Scholar 

  8. Chakraborty BN, Patterson NA, Kapoor M (1991) An electroporation-based system for high-efficiency transformation of germinated conidia of filamentous fungi. Can J Microbiol 37:858–863

    Article  CAS  Google Scholar 

  9. Sánchez O, Aguirre J (1996) Efficient transformation of Aspergillus nidulans by electroporation of germinated conidia. Fungal Genet Newslett 43:48–51

    Google Scholar 

  10. Robinson M, Sharon A (1999) Transformation of the bioherbicide Colletotrichum gloeosporioides f. sp. aeschynomene by electroporation of germinated conidia. Curr Genet 36:98–104

    Article  CAS  Google Scholar 

  11. Xu S, Zhou Z, Du G, Zhou J, Chen J (2014) Efficient transformation of Rhizopus delemar by electroporation of germinated spores. J Microbiol Methods 103:58–63

    Article  CAS  Google Scholar 

  12. Kuo CY, Huang CT (2008) A reliable transformation method and heterologous expression of beta-glucuronidase in Lentinula edodes. J Microbiol Methods 72:111–115

    Article  CAS  Google Scholar 

  13. Pigac J, Schrempf H (1995) A simple and rapid method of transformation of Streptomyces rimosus R6 and other Streptomycetes by electroporation. Appl Environ Microbiol 61:352–356

    Article  CAS  Google Scholar 

  14. Jiang Q, Ying SH, Feng MG (2007) Enhanced frequency of Beauveria bassiana blastospore transformation by restriction enzyme mediated integration and electroporation. J Microbiol Methods 69:512–517

    Article  CAS  Google Scholar 

  15. Miklenić M, Štafa A, Bajić A, Žunar B, Lisnić B, Svetec IK (2013) Genetic transformation of the yeast Dekkera/Brettanomyces bruxellensis with non-homologous DNA. J Microbiol Biotechnol 23:674–680

    Article  Google Scholar 

  16. Díaz A, Villanueva P, Oliva V, Gil-Duran C, Fierro F, Chávez R, Vaca I (2019) Genetic transformation of the filamentous fungus Pseudogymnoascus verrucosus of Antarctic origin. Front Microbiol 10:2675

    Article  Google Scholar 

  17. Kawai S, Hashimoto W, Murata K (2010) Transformation of Saccharomyces cerevisiae and other fungi: methods and possible underlying mechanism. Bioeng Bugs 1:395–403

    Article  Google Scholar 

  18. Cruz-Ramón J, Fernández FJ, Mejía A, Fierro F (2018) Electroporation of germinated conidia and young mycelium as an efficient transformation system for Acremonium chrysogenum. Folia Microbiol 64:33–39

    Article  Google Scholar 

  19. Nash CH, Pieper RL (1974) Physiology of spore germination in Cephalosporium acremonium. Mycopathol Mycol Appl 54:369–375

    Article  CAS  Google Scholar 

  20. Chakraborty BN, Kapoor M (1990) Transformation of filamentous fungi by electroporation. Nucleic Acids Res 18:6737

    Article  CAS  Google Scholar 

  21. Skatrud PL, Queener SW, Carr LG, Fisher DL (1987) Efficient integrative transformation of Cephalosporium acremonium. Curr Genet 12:337–348

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the CONACyT (México) through the Research Project CB-2008-01 105527. Jessica Cruz-Ramón received a Scholarship Grant from the CONACyT (No. 203440).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Fierro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cruz-Ramón, J., Fernández, F.J., Fierro, F. (2021). High-Efficiency Electroporation for Genetic Improvement of Fungal Strains. In: Barreiro, C., Barredo, JL. (eds) Antimicrobial Therapies. Methods in Molecular Biology, vol 2296. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1358-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1358-0_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1357-3

  • Online ISBN: 978-1-0716-1358-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics