Skip to main content

Maize In Planta Haploid Inducer Lines: A Cornerstone for Doubled Haploid Technology

  • Protocol
  • First Online:
Doubled Haploid Technology

Abstract

Doubled haploid (DH) technology produces strictly homozygous fertile plant thanks to doubling the chromosomes of a haploid embryo/seedling. Haploid embryos are derived from either male or female germ line cells and hold only half the number of chromosomes found in somatic plant tissues, albeit in a recombinant form due to meiotic genetic shuffling. DH production allows to rapidly fix these recombinant haploid genomes in the form of perfectly homozygous plants (inbred lines), which are produced in two rather than six or more generations. Thus, DH breeding enables fast evaluation of phenotypic traits on homogenous progeny. While for most crops haploid embryos are produced by costly and often genotype-dependent in vitro methods, for maize, two unique in planta systems are available to induce haploid embryos directly in the seed. Two “haploid inducer lines”, identified from spontaneous maize mutants, are able to induce embryos of paternal or maternal origin. Although effortless crosses with lines of interest are sufficient to trigger haploid embryos, substantial improvements were necessary to bring DH technology to large scale production. They include the development of modern haploid inducer lines with high induction rates (8–12%), and methods to sort kernels with haploid embryos from the normal ones. Chromosome doubling represents also a crucial step in the DH process. Recent identification of genomic loci involved in spontaneous doubling opens up perspectives for a fully in planta DH pipeline in maize. Although discovered more than 60 years ago, maize haploid inducer lines still make headlines thanks to novel applications and findings. Indeed, maternal haploid induction was elegantly diverted to deliver genome editing machinery in germplasm recalcitrant to transformation techniques. The recent discovery of two molecular players controlling haploid induction allowed to revisit the mechanistic basis of maize maternal haploid induction and to successfully translate haploid induction ability to other crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Geiger HH, Gordillo GA (2010) Doubled haploids in hybrid maize breeding. Maydica 54:485–499

    Google Scholar 

  2. Chaikam V, Molenaar W, Melchinger AE, Boddupalli PM (2019) Doubled haploid technology for line development in maize: technical advances and prospects. Theor Appl Genet 132:3227–3243. https://doi.org/10.1007/s00122-019-03433-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Blakeslee AF, Farnhama ME, Bergner D, Belling J (1922) A haploid mutant in the jimson weed, “Daturastramonium”. Science 55:647–647. https://doi.org/10.1126/science.55.1433.647

    Article  Google Scholar 

  4. Chase SS (1949) Monoploid frequencies in a commercial double cross hybrid maize, and in its component single cross hybrids and inbred lines. Genetics 34:328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Maluszynski M, Kasha KJ, Szarejko I (2003) Published doubled haploid protocols in plant species. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants. Springer, Dordrecht, pp 309–335

    Chapter  Google Scholar 

  6. Jacquier NMA, Gilles LM, Pyott DE, Martinant J-P, Rogowsky PM, Widiez T (2020) Puzzling out plant reproduction by haploid induction for innovations in plant breeding. Nat Plants 6(6):610–619. https://doi.org/10.1038/s41477-020-0664-9

    Article  PubMed  Google Scholar 

  7. Gilles LM, Martinant J-P, Rogowsky PM, Widiez T (2017) Haploid induction in plants. Curr Biol 27:R1095–R1097. https://doi.org/10.1016/j.cub.2017.07.055

    Article  CAS  PubMed  Google Scholar 

  8. Kalinowska K, Chamas S, Unkel K, Demidov D, Lermontova I, Dresselhaus T, Kumlehn J, Dunemann F, Houben A (2019) State-of-the-art and novel developments of in vivo haploid technologies. Theor Appl Genet 132:593–605. https://doi.org/10.1007/s00122-018-3261-9

    Article  CAS  PubMed  Google Scholar 

  9. Coe EH (1959) A line of maize with high haploid frequency. Am Nat 93:381–382. https://doi.org/10.1086/282098

    Article  Google Scholar 

  10. Kermicle JL (1969) Androgenesis conditioned by a mutation in maize. Science 166:1422–1424. https://doi.org/10.1126/science.166.3911.1422

    Article  CAS  PubMed  Google Scholar 

  11. Chang M-T, Coe EH (2009) Doubled haploids. In: Molecular genetic approaches to maize improvement. Springer, Berlin, pp 127–142

    Chapter  Google Scholar 

  12. Liu Z, Wang Y, Ren J, Mei M, Frei UK, Trampe B, Lübberstedt T (2016) Maize doubled haploids. In: Janick J (ed) Plant breeding reviews. Wiley, Hoboken, NJ, pp 123–166

    Chapter  Google Scholar 

  13. Forster BP, Thomas WTB (2010) Doubled haploids in genetics and plant breeding. In: Janick J (ed) Plant breeding reviews. Wiley, Oxford, pp 57–88

    Chapter  Google Scholar 

  14. Foiada F, Westermeier P, Kessel B, Ouzunova M, Wimmer V, Mayerhofer W, Presterl T, Dilger M, Kreps R, Eder J, Schön C-C (2015) Improving resistance to the European corn borer: a comprehensive study in elite maize using QTL mapping and genome-wide prediction. Theor Appl Genet 128:875–891. https://doi.org/10.1007/s00122-015-2477-1

    Article  CAS  PubMed  Google Scholar 

  15. Tsonev S, Todorovska E, Avramova V, Kolev S, Abu-Mhadi N, Christov NK (2009) Genomics assisted improvement of drought tolerance in maize: QTL approaches. Biotechnol Biotechnol Equip 23:1410–1413. https://doi.org/10.2478/V10133-009-0004-8

    Article  CAS  Google Scholar 

  16. Torres AF, Noordam-Boot CMM, Dolstra O, van der Weijde T, Combes E, Dufour P, Vlaswinkel L, Visser RGF, Trindade LM (2015) Cell wall diversity in forage maize: genetic complexity and bioenergy potential. Bioenergy Res 8:187–202. https://doi.org/10.1007/s12155-014-9507-8

    Article  Google Scholar 

  17. Lübberstedt T, Frei UK (2012) Application of doubled haploids for target gene fixation in backcross programmes of maize: doubled haploids for target gene fixation. Plant Breed 131:449–452. https://doi.org/10.1111/j.1439-0523.2011.01948.x

    Article  Google Scholar 

  18. Chase SS (1949) Spontaneous doubling of the chromosome complement in monoploid sporophytes of maize. Proc Iowa Acad Sci 56:113–115

    Google Scholar 

  19. Chase SS (1952) Production of homozygous diploids of maize from monoploids 1. Agron J 44:263. https://doi.org/10.2134/agronj1952.00021962004400050010x

    Article  Google Scholar 

  20. Shull GH (1948) What is “heterosis”? Genetics 33:439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Duvick DN (2005) The contribution of breeding to yield advances in maize (Zea mays L.). In: Sparks DL (ed) Advances in agronomy. Elsevier, San Diego, pp 83–145

    Google Scholar 

  22. Bordes J, Charmet G, de Vaulx RD, Lapierre A, Pollacsek M, Beckert M, Gallais A (2007) Doubled-haploid versus single-seed descent and S1-family variation for testcross performance in a maize population. Euphytica 154:41–51. https://doi.org/10.1007/s10681-006-9266-5

    Article  Google Scholar 

  23. Weber DF (2014) Today’s use of haploids in corn plant breeding. In: Sparks DL (ed) Advances in agronomy. Elsevier, San Diego, pp 123–144

    Google Scholar 

  24. Bohra A, Jha UC, Adhimoolam P, Bisht D, Singh NP (2016) Cytoplasmic male sterility (CMS) in hybrid breeding in field crops. Plant Cell Rep 35:967–993

    Article  CAS  PubMed  Google Scholar 

  25. Laughnan JR, Gabay-Laughnan S (1983) Cytoplasmic male sterility in maize. Annu Rev Genet 17:27–48. https://doi.org/10.1146/annurev.ge.17.120183.000331

    Article  CAS  PubMed  Google Scholar 

  26. Doudna JA, Charpentier E (2014) The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096. https://doi.org/10.1126/science.1258096

    Article  CAS  PubMed  Google Scholar 

  27. Manghwar H, Lindsey K, Zhang X, Jin S (2019) CRISPR/Cas system: recent advances and future prospects for genome editing. Trends Plant Sci 24:1102–1125. https://doi.org/10.1016/j.tplants.2019.09.006

    Article  CAS  PubMed  Google Scholar 

  28. Ji X, Yang B, Wang D (2020) Achieving plant genome editing while bypassing tissue culture. Trends Plant Sci 25:427–429. https://doi.org/10.1016/j.tplants.2020.02.011

    Article  CAS  PubMed  Google Scholar 

  29. Ikeuchi M, Favero DS, Sakamoto Y, Iwase A, Coleman D, Rymen B, Sugimoto K (2019) Molecular mechanisms of plant regeneration. Annu Rev Plant Biol 70:377–406. https://doi.org/10.1146/annurev-arplant-050718-100434

    Article  CAS  PubMed  Google Scholar 

  30. Wang B, Zhu L, Zhao B, Zhao Y, Xie Y, Zheng Z, Li Y, Sun J, Wang H (2019) Development of a haploid-inducer mediated genome editing system for accelerating maize breeding. Mol Plant 12:597–602. https://doi.org/10.1016/j.molp.2019.03.006

    Article  CAS  PubMed  Google Scholar 

  31. Kelliher T, Starr D, Su X, Tang G, Chen Z, Carter J, Wittich PE, Dong S, Green J, Burch E, McCuiston J, Gu W, Sun Y, Strebe T, Roberts J, Bate NJ, Que Q (2019) One-step genome editing of elite crop germplasm during haploid induction. Nat Biotechnol 37:287–292. https://doi.org/10.1038/s41587-019-0038-x

    Article  CAS  PubMed  Google Scholar 

  32. Ishii T, Karimi-Ashtiyani R, Houben A (2016) Haploidization via chromosome elimination: means and mechanisms. Annu Rev Plant Biol 67:421–438. https://doi.org/10.1146/annurev-arplant-043014-114714

    Article  CAS  PubMed  Google Scholar 

  33. Randolph LF (1932) Some effects of high temperature on polyploidy and other variations in maize. Proc Natl Acad Sci 18:222–229. https://doi.org/10.1073/pnas.18.3.222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lashermes P, Beckert M (1988) Genetic control of maternal haploidy in maize (Zea mays L.) and selection of haploid inducing lines. Theor Appl Genet 76:405–410. https://doi.org/10.1007/BF00265341

    Article  CAS  PubMed  Google Scholar 

  35. Hu H, Schrag TA, Peis R, Unterseer S, Schipprack W, Chen S, Lai J, Yan J, Prasanna BM, Nair SK, Chaikam V, Rotarenco V, Shatskaya OA, Zavalishina A, Scholten S, Schön C-C, Melchinger AE (2016) The genetic basis of haploid induction in maize identified with a novel genome-wide association method. Genetics 202:1267–1276. https://doi.org/10.1534/genetics.115.184234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Röber FK, Gordillo GA, Geiger HH (2005) In vivo haploid induction in maize-performance of new inducers and significance of doubled haploid lines in hybrid breeding. Maydica 50:275–283

    Google Scholar 

  37. Pollacsek M (1992) Management of the ig gene for haploid induction in maize. Agronomie 12:247–251. https://doi.org/10.1051/agro:19920304

    Article  Google Scholar 

  38. Coe EH, Sarkar KR (1964) The detection of haploids in maize. J Hered 55:231–233. https://doi.org/10.1093/oxfordjournals.jhered.a107340

    Article  Google Scholar 

  39. Sarkar KR, Coe EH (1966) A genetic analysis of the origin of maternal haploids in maize. Genetics 54:453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Smelser A, Blanco M, Lübberstedt T, Schechert A, Vanous A, Gardner C (2015) Weighing in on a method to discriminate maize haploid from hybrid seed. Plant Breed 134:283–285. https://doi.org/10.1111/pbr.12260

    Article  CAS  Google Scholar 

  41. Molenaar WS, de Oliveira Couto EG, Piepho H-P, Melchinger AE (2019) Early diagnosis of ploidy status in doubled haploid production of maize by stomata length and flow cytometry measurements. Plant Breed 138:266–276

    Article  Google Scholar 

  42. Lashermes P, Gaillard A, Beckert M (1988) Gynogenetic haploid plants analysis for agronomic and enzymatic markers in maize (Zea mays L.). Theor Appl Genet 76:570–572. https://doi.org/10.1007/BF00260910

    Article  CAS  PubMed  Google Scholar 

  43. Dong L, Li L, Liu C, Liu C, Geng S, Li X, Huang C, Mao L, Chen S, Xie C (2018) Genome editing and double-fluorescence proteins enable robust maternal haploid induction and identification in maize. Mol Plant 11:1214–1217

    Article  CAS  PubMed  Google Scholar 

  44. Boote BW, Freppon DJ, De La Fuente GN, Lübberstedt T, Nikolau BJ, Smith EA (2016) Haploid differentiation in maize kernels based on fluorescence imaging. Plant Breed 135:439–445. https://doi.org/10.1111/pbr.12382

    Article  CAS  Google Scholar 

  45. De La Fuente GN, Carstensen JM, Edberg MA, Lübberstedt T (2017) Discrimination of haploid and diploid maize kernels via multispectral imaging. Plant Breed 136:50–60. https://doi.org/10.1111/pbr.12445

    Article  CAS  Google Scholar 

  46. Chaikam V, Nair SK, Babu R, Martinez L, Tejomurtula J, Boddupalli PM (2015) Analysis of effectiveness of R1-nj anthocyanin marker for in vivo haploid identification in maize and molecular markers for predicting the inhibition of R1-nj expression. Theor Appl Genet 128:159–171

    Article  CAS  PubMed  Google Scholar 

  47. Chaikam V, Martinez L, Melchinger AE, Schipprack W, Boddupalli PM (2016) Development and validation of red root marker-based haploid inducers in maize. Crop Sci 56:1678–1688

    Article  CAS  Google Scholar 

  48. Dong X, Xu X, Li L, Liu C, Tian X, Li W, Chen S (2014) Marker-assisted selection and evaluation of high oil in vivo haploid inducers in maize. Mol Breed 34:1147–1158

    Article  CAS  Google Scholar 

  49. Rotarenco VA, Kirtoca IH, Jacota AG (2007) The possibility of identifying kernels with haploid embryos using oil content. Maize Genetics Cooperation Newsletter 81:11

    Google Scholar 

  50. Melchinger AE, Schipprack W, Würschum T, Chen S, Technow F (2013) Rapid and accurate identification of in vivo-induced haploid seeds based on oil content in maize. Sci Rep 3:2129. https://doi.org/10.1038/srep02129

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wang H, Liu J, Xu X, Huang Q, Chen S, Yang P, Chen S, Song Y (2016) Fully-automated high-throughput NMR system for screening of haploid kernels of maize (Corn) by measurement of oil content. PLoS One 11:e0159444

    Article  PubMed  PubMed Central  Google Scholar 

  52. Melchinger AE, Schipprack W, Mi X, Mirdita V (2015) Oil content is superior to oil mass for identification of haploid seeds in maize produced with high-oil inducers. Crop Sci 55:188–195

    Article  Google Scholar 

  53. Cui Y, Ge W, Li J, Zhang J, An D, Wei Y (2019) Screening of maize haploid kernels based on near infrared spectroscopy quantitative analysis. Comput Electron Agric 158:358–368

    Article  Google Scholar 

  54. Chaikam V, Mahuku G, Prasanna BM (2012) Chromosome doubling of maternal haploids. In: Prasanna BM, Chaikam V, Mahuku G (eds) Doubled haploid technology in maize breeding: theory and practice. CIMMYT, Mexico, pp 24–29

    Google Scholar 

  55. Chaikam V, Gowda M, Nair SK, Melchinger AE, Boddupalli PM (2019) Genome-wide association study to identify genomic regions influencing spontaneous fertility in maize haploids. Euphytica 215:138

    Article  PubMed  PubMed Central  Google Scholar 

  56. Blakeslee AF, Avery AG (1937) Methods of inducing doubling of chromosomes in plants. J Hered 28:393–411. https://doi.org/10.1093/oxfordjournals.jhered.a104294

    Article  CAS  Google Scholar 

  57. Häntzschel KR, Weber G (2010) Blockage of mitosis in maize root tips using colchicine-alternatives. Protoplasma 241:99–104. https://doi.org/10.1007/s00709-009-0103-2

    Article  CAS  PubMed  Google Scholar 

  58. Chaikam V, Gowda M, Martinez L, Ochieng J, Omar HA, Prasanna BM (2020) Improving the efficiency of colchicine-based chromosomal doubling of maize haploids. Plan Theory 9:459. https://doi.org/10.3390/plants9040459

    Article  CAS  Google Scholar 

  59. Melchinger AE, Molenaar WS, Mirdita V, Schipprack W (2016) Colchicine alternatives for chromosome doubling in maize haploids for doubled-haploid production. Crop Sci 56:559–569

    Article  CAS  Google Scholar 

  60. Molenaar WS, Schipprack W, Melchinger AE (2018) Nitrous oxide-induced chromosome doubling of maize haploids. Crop Sci 58:650–659. https://doi.org/10.2135/cropsci2017.07.0412

    Article  CAS  Google Scholar 

  61. Ren J, Wu P, Tian X, Lübberstedt T, Chen S (2017) QTL mapping for haploid male fertility by a segregation distortion method and fine mapping of a key QTL qhmf4 in maize. Theor Appl Genet 130:1349–1359. https://doi.org/10.1007/s00122-017-2892-6

    Article  CAS  PubMed  Google Scholar 

  62. Wu P, Ren J, Tian X, Lübberstedt T, Li W, Li G, Li X, Chen S (2017) New insights into the genetics of haploid male fertility in maize. Crop Sci 57:637–647. https://doi.org/10.2135/cropsci2016.01.0017

    Article  Google Scholar 

  63. Yang J, Qu Y, Chen Q, Tang J, Lübberstedt T, Li H, Liu Z (2019) Genetic dissection of haploid male fertility in maize (Zea mays L.). Plant Breed 138:259–265

    Article  CAS  Google Scholar 

  64. Kleiber D, Prigge V, Melchinger AE, Burkard F, San Vicente F, Palomino G, Gordillo GA (2012) Haploid fertility in temperate and tropical maize germplasm. Crop Sci 52:623–630

    Article  Google Scholar 

  65. Ren J, Boerman AN, Liu R, Wu P, Trampe B, Vanous K, Frei UK, Chen S, Lübberstedt T (2020) Mapping of QTL and identification of candidate genes conferring spontaneous haploid genome doubling in maize (Zea mays L.). Plant Sci 293:110337. https://doi.org/10.1016/j.plantsci.2019.110337

    Article  CAS  PubMed  Google Scholar 

  66. Wu P, Li H, Ren J, Chen S (2014) Mapping of maternal QTLs for in vivo haploid induction rate in maize (Zea mays L.). Euphytica 196:413–421. https://doi.org/10.1007/s10681-013-1043-7

    Article  Google Scholar 

  67. Trampe B, dos Santos IG, Frei UK, Ren J, Chen S, Lübberstedt T (2020) QTL mapping of spontaneous haploid genome doubling using genotyping-by-sequencing in maize (Zea mays L.). Theor Appl Genet 133(7):1–10

    Article  Google Scholar 

  68. Boerman NA, Frei UK, Lübberstedt T (2020) Impact of spontaneous haploid genome doubling in maize breeding. Plan Theory 9:369. https://doi.org/10.3390/plants9030369

    Article  CAS  Google Scholar 

  69. Dumas C, Rogowsky P (2008) Fertilization and early seed formation. C R Biol 331:715–725. https://doi.org/10.1016/j.crvi.2008.07.013

    Article  PubMed  Google Scholar 

  70. Zhou L-Z, Juranić M, Dresselhaus T (2017) Germline development and fertilization mechanisms in maize. Mol Plant 10:389–401. https://doi.org/10.1016/j.molp.2017.01.012

    Article  CAS  PubMed  Google Scholar 

  71. Faure J-E, Rusche ML, Thomas A, Keim P, Dumas C, Mogensen HL, Rougier M, Chaboud A (2003) Double fertilization in maize: the two male gametes from a pollen grain have the ability to fuse with egg cells. Plant J 33:1051–1062

    Article  PubMed  Google Scholar 

  72. Kermicle JL (1971) Pleiotropic effects on seed development of the indeterminate gametophyte gene in maize. Am J Bot 58:1–7. https://doi.org/10.1002/j.1537-2197.1971.tb09938.x

    Article  Google Scholar 

  73. Evans MMS (2007) The indeterminate gametophyte1 gene of maize encodes a LOB domain protein required for embryo sac and leaf development. Plant Cell 19:46–62. https://doi.org/10.1105/tpc.106.047506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Xu X, Li L, Dong X, Jin W, Melchinger AE, Chen S (2013) Gametophytic and zygotic selection leads to segregation distortion through in vivo induction of a maternal haploid in maize. J Exp Bot 64:1083–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Carputo D, Monti L, Werner JE, Frusciante L (1999) Uses and usefulness of endosperm balance number. Theor Appl Genet 98:478–484. https://doi.org/10.1007/s001220051095

    Article  Google Scholar 

  76. Huang B-Q, Sheridan WF (1996) Embryo sac development in the maize indeterminate gametophytel mutant: abnormal nuclear behavior and defective microtubule organization. Plant Cell 8:1391–1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Guo F, Huang B-Q, Han Y, Zee S-Y (2004) Fertilization in maize indeterminate gametophyte1 mutant. Protoplasma 223(2–4):111–120. https://doi.org/10.1007/s00709-004-0045-7

    Article  PubMed  Google Scholar 

  78. Seguí-Simarro JM (2010) Androgenesis revisited. Bot Rev 76:377–404. https://doi.org/10.1007/s12229-010-9056-6

    Article  Google Scholar 

  79. Barret P, Brinkmann M, Beckert M (2008) A major locus expressed in the male gametophyte with incomplete penetrance is responsible for in situ gynogenesis in maize. Theor Appl Genet 117:581–594. https://doi.org/10.1007/s00122-008-0803-6

    Article  CAS  PubMed  Google Scholar 

  80. Zhao X, Xu X, Xie H, Chen S, Jin W (2013) Fertilization and uniparental chromosome elimination during crosses with maize haploid inducers. Plant Physiol 163:721–731. https://doi.org/10.1104/pp.113.223982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bylich VG, Chalyk ST (1996) Existence of pollen grains with a pair of morphologically different sperm nuclei as a possible cause of the haploid-inducing capacity in ZMS line. Maize Genetics Cooperation Newsletter 70:33–33

    Google Scholar 

  82. Chalyk S, Baumann A, Daniel G, Eder J (2003) Aneuploidy as a possible cause of haploid-induction in maize. Maize Genetics Cooperation Newsletter 77:29. https://mnl.maizegdb.org/mnl/77/15chalyk.html

  83. Li X, Meng D, Chen S, Luo H, Zhang Q, Jin W, Yan J (2017) Single nucleus sequencing reveals spermatid chromosome fragmentation as a possible cause of maize haploid induction. Nat Commun 8:991. https://doi.org/10.1038/s41467-017-00969-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Prigge V, Xu X, Li L, Babu R, Chen S, Atlin GN, Melchinger AE (2012) New insights into the genetics of in vivo induction of maternal haploids, the Backbone of doubled haploid technology in maize. Genetics 190:781–793. https://doi.org/10.1534/genetics.111.133066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Dong X, Xu X, Miao J, Li L, Zhang D, Mi X, Liu C, Tian X, Melchinger AE, Chen S (2013) Fine mapping of qhir1 influencing in vivo haploid induction in maize. Theor Appl Genet 126:1713–1720

    Article  CAS  PubMed  Google Scholar 

  86. Gilles LM, Khaled A, Laffaire J, Chaignon S, Gendrot G, Laplaige J, Bergès H, Beydon G, Bayle V, Barret P, Comadran J, Martinant J, Rogowsky PM, Widiez T (2017) Loss of pollen-specific phospholipase NOT LIKE DAD triggers gynogenesis in maize. EMBO J 36:707–717. https://doi.org/10.15252/embj.201796603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kelliher T, Starr D, Richbourg L, Chintamanani S, Delzer B, Nuccio ML, Green J, Chen Z, McCuiston J, Wang W, Liebler T, Bullock P, Martin B (2017) MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. Nature 542:105–109. https://doi.org/10.1038/nature20827

    Article  CAS  PubMed  Google Scholar 

  88. Liu C, Li X, Meng D, Zhong Y, Chen C, Dong X, Xu X, Chen B, Li W, Li L, Tian X, Zhao H, Song W, Luo H, Zhang Q, Lai J, Jin W, Yan J, Chen S (2017) A 4-bp insertion at ZmPLA1 encoding a putative phospholipase a generates haploid induction in maize. Mol Plant 10:520–522. https://doi.org/10.1016/j.molp.2017.01.011

    Article  CAS  PubMed  Google Scholar 

  89. Scherer GFE, Ryu SB, Wang X, Matos AR, Heitz T (2010) Patatin-related phospholipase A: nomenclature, subfamilies and functions in plants. Trends Plant Sci 15:693–700. https://doi.org/10.1016/j.tplants.2010.09.005

    Article  CAS  PubMed  Google Scholar 

  90. Murakami M, Taketomi Y, Miki Y, Sato H, Hirabayashi T, Yamamoto K (2011) Recent progress in phospholipase A2 research: from cells to animals to humans. Prog Lipid Res 50:152–192. https://doi.org/10.1016/j.plipres.2010.12.001

    Article  CAS  PubMed  Google Scholar 

  91. Wang X (2001) Plant phospholipases. Annu Rev Plant Biol 52:211–231. https://doi.org/10.1146/annurev.arplant.52.1.211

  92. Liu C, Li W, Zhong Y, Dong X, Hu H, Tian X, Wang L, Chen B, Chen C, Melchinger AE, Chen S (2015) Fine mapping of qhir8 affecting in vivo haploid induction in maize. Theor Appl Genet 128:2507–2515. https://doi.org/10.1007/s00122-015-2605-y

    Article  CAS  PubMed  Google Scholar 

  93. Zhong Y, Liu C, Qi X, Jiao Y, Wang D, Wang Y, Liu Z, Chen C, Chen B, Tian X, Li J, Chen M, Dong X, Xu X, Li L, Li W, Liu W, Jin W, Lai J, Chen S (2019) Mutation of ZmDMP enhances haploid induction in maize. Nat Plants 5:575–580. https://doi.org/10.1038/s41477-019-0443-7

    Article  PubMed  Google Scholar 

  94. Cyprys P, Lindemeier M, Sprunck S (2019) Gamete fusion is facilitated by two sperm cell-expressed DUF679 membrane proteins. Nat Plants 5:253–257. https://doi.org/10.1038/s41477-019-0382-3

    Article  CAS  PubMed  Google Scholar 

  95. Takahashi T, Mori T, Ueda K, Yamada L, Nagahara S, Higashiyama T, Sawada H, Igawa T (2018) The male gamete membrane protein DMP9/DAU2 is required for double fertilization in flowering plants. Development 145:dev170076. https://doi.org/10.1242/dev.170076

    Article  CAS  PubMed  Google Scholar 

  96. Zhong Y, Chen B, Li M, Wang D, Jiao Y, Qi X, Wang M, Liu Z, Chen C, Wang Y, Chen M, Li J, Xiao Z, Cheng D, Liu W, Boutilier K, Liu C, Chen S (2020) A DMP-triggered in vivo maternal haploid induction system in the dicotyledonous Arabidopsis. Nat Plants 6:466–472. https://doi.org/10.1038/s41477-020-0658-7

    Article  CAS  PubMed  Google Scholar 

  97. Swapna M, Sarkar KR (2012) Anomalous fertilization in haploidy inducer lines in maize (Zea mays L). Maydica 56(3):221–225

    Google Scholar 

  98. Tian X, Qin Y, Chen B, Liu C, Wang L, Li X, Dong X, Liu L, Chen S (2018) Hetero-fertilization together with failed egg–sperm cell fusion supports single fertilization involved in in vivo haploid induction in maize. J Exp Bot 69:4689–4701. https://doi.org/10.1093/jxb/ery177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wedzony M, Röber FK, Geiger HH (2002) Chromosome elimination observed in selfed progenies of maize inducer line RWS. In: XVIIth international congress on sex plant reports Maria Curie—Sklodowska University Press, Lublin

    Google Scholar 

  100. Fischer E (2004) Molecular genetic studies on the occurrence of paternal DNA transmission during in vivo haploid induction in maize (Zea mays). Dissertation, University of Hohenheim

    Google Scholar 

  101. Zhang Z, Qiu F, Liu Y, Ma K, Li Z, Xu S (2008) Chromosome elimination and in vivo haploid production induced by stock 6-derived inducer line in maize (Zea mays L.). Plant Cell Rep 27:1851–1860. https://doi.org/10.1007/s00299-008-0601-2

    Article  CAS  PubMed  Google Scholar 

  102. Wang Z, Yin H, Lv L, Feng Y, Chen S, Liang J, Huang Y, Jiang X, Jiang H, Bukhari I, Wu L, Cooke HJ, Shi Q (2014) Unrepaired DNA damage facilitates elimination of uniparental chromosomes in interspecific hybrid cells. Cell Cycle 13:13

    Article  Google Scholar 

  103. Comai L, Tan EH (2019) Haploid induction and genome instability. Trends Genet 35:791–803. https://doi.org/10.1016/j.tig.2019.07.005

    Article  CAS  PubMed  Google Scholar 

  104. Bennett MD, Finch RA, Barclay IR (1976) The time rate and mechanism of chromosome elimination in Hordeum hybrids. Chromosoma 54:175–200. https://doi.org/10.1007/BF00292839

    Article  Google Scholar 

  105. Devaux P (2003) The Hordeum bulbosum (L.) method. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants. Springer, Dordrecht, pp 15–19

    Chapter  Google Scholar 

  106. Gernand D, Rutten T, Pickering R, Houben A (2006) Elimination of chromosomes in Hordeum vulgare × H. bulbosum crosses at mitosis and interphase involves micronucleus formation and progressive heterochromatinization. Cytogenet Genome Res 114:169–174. https://doi.org/10.1159/000093334

    Article  CAS  PubMed  Google Scholar 

  107. Li L, Xu X, Jin W, Chen S (2009) Morphological and molecular evidences for DNA introgression in haploid induction via a high oil inducer CAUHOI in maize. Planta 230:367–376. https://doi.org/10.1007/s00425-009-0943-1

    Article  CAS  PubMed  Google Scholar 

  108. Rotarenco V, Eder J (2003) Possible effects of heterofertilization on the induction of maternal haploids in maize. Maize Genetics Cooperation Newsletter 77:30–30

    Google Scholar 

  109. Liu L, Li W, Liu C, Chen B, Tian X, Chen C, Li J, Chen S (2018) In vivo haploid induction leads to increased frequency of twin-embryo and abnormal fertilization in maize. BMC Plant Biol 18:313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sprague GF (1932) The nature and extent of hetero-fertilization in maize. Genetics 17:358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Yao L, Zhang Y, Liu C, Liu Y, Wang Y, Liang D, Liu J, Sahoo G, Kelliher T (2018) OsMATL mutation induces haploid seed formation in indica rice. Nat Plants 4:530–533. https://doi.org/10.1038/s41477-018-0193-y

    Article  CAS  PubMed  Google Scholar 

  112. Liu C, Zhong Y, Qi X, Chen M, Liu Z, Chen C, Tian X, Li J, Jiao Y, wang D, Wang Y, Li M, Xin M, Liu W, Jin W, Chen S (2020) Extension of the in vivo haploid induction system from maize to wheat. Plant Biotechnol J 18(2):316–318

    Article  PubMed  Google Scholar 

  113. Liu H, Wang K, Jia Z, Gong Q, Lin Z, Du L, Pei X, Ye X (2020) Efficient induction of haploid plants in wheat by editing of TaMTL using an optimized Agrobacterium-mediated CRISPR system. J Exp Bot 71:1337–1349. https://doi.org/10.1093/jxb/erz529

    Article  CAS  PubMed  Google Scholar 

  114. Gilles LM, Padula VL, Jacquier NM, Martinant J-P, Rogowsky P, Widiez T (2020) Lipid anchoring and electrostatic interactions target the phospholipase NOT-LIKE-DAD to pollen endo-plasma membrane. bioRxiv. https://doi.org/10.1101/2020.10.05.326157

Download references

Acknowledgments

This work was supported by grant “ANR-19-CE20-0012” to T.W., funded by ANR “JC/JC” (Junior Investigator Grant); and by “pack ambition recherche” from the Région Auvergne-Rhône-Alpes (“HD-INNOV”) to T.W.. L.M.G. and N.M.A.J. were supported by CIFRE PhD fellowship from ANRT funding agency, grant no. 2015/0777 and 2019/0771 respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Widiez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jacquier, N.M.A., Gilles, L.M., Martinant, JP., Rogowsky, P.M., Widiez, T. (2021). Maize In Planta Haploid Inducer Lines: A Cornerstone for Doubled Haploid Technology. In: Segui-Simarro, J.M. (eds) Doubled Haploid Technology. Methods in Molecular Biology, vol 2288. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1335-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1335-1_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1334-4

  • Online ISBN: 978-1-0716-1335-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics