Skip to main content

Fundamental and Practical Aspects in the Formulation of Colloidal Polyelectrolyte Complexes of Chitosan and siRNA

  • Protocol
  • First Online:
Design and Delivery of SiRNA Therapeutics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2282))

  • 2388 Accesses

Abstract

The formation of electrostatic interactions between polyanionic siRNA and polycations gives an easy access to the formation of colloidal particles capable of delivering siRNA in vitro or in vivo. Among the polycations used for siRNA delivery, chitosan occupies a special place due to its unique physicochemical and biological properties. In this chapter we describe the fundamental and practical aspects of the formation of colloidal complexes between chitosan and siRNA. The basis of the electrostatic complexation between oppositely charged polyelectrolytes is first introduced with a focus on the specific conditions to obtain stable colloid complex particles. Subsequent, the properties that make chitosan so special are described. In a third part, the main parameters influencing the colloidal properties and stability of siRNA/chitosan complexes are reviewed with emphasis on some practical aspects to consider in the preparation of complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yadava P, Roura D, Hughes JA (2007) Evaluation of two cationic delivery systems for siRNA. Oligonucleotides 17(2):213–222. https://doi.org/10.1089/oli.2006.0062

    Article  CAS  PubMed  Google Scholar 

  2. Monnery BD, Wright M, Cavill R, Hoogenboom R, Shaunak S, Steinke JHG, Thanou M (2017) Cytotoxicity of polycations: relationship of molecular weight and the hydrolytic theory of the mechanism of toxicity. Int J Pharm 521(1–2):249–258. https://doi.org/10.1016/j.ijpharm.2017.02.048

    Article  CAS  PubMed  Google Scholar 

  3. Ravi Kumar MNV (2000) A review of chitin and chitosan applications. React Funct Polym 46(1):1–27. https://doi.org/10.1016/S1381-5148(00)00038-9

    Article  Google Scholar 

  4. Buschmann MD, Merzouki A, Lavertu M, Thibault M, Jean M, Darras V (2013) Chitosans for delivery of nucleic acids. Adv Drug Deliv Rev 65(9):1234–1270. https://doi.org/10.1016/j.addr.2013.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sizovs A, McLendon PM, Srinivasachari S, Reineke TM (2010) Carbohydrate polymers for nonviral nucleic acid delivery. Top Curr Chem 296:131–190. https://doi.org/10.1007/128_2010_68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Serrano-Sevilla I, Artiga Á, Mitchell SG, De Matteis L, de la Fuente JM (2019) Natural polysaccharides for siRNA delivery: nanocarriers based on chitosan, hyaluronic acid, and their derivatives. Molecules (Basel, Switzerland) 24(14):2570. https://doi.org/10.3390/molecules24142570

    Article  CAS  Google Scholar 

  7. Singh B, Choi YJ, Park IK, Akaike T, Cho CS (2014) Chemical modification of chitosan with pH-sensitive molecules and specific ligands for efficient DNA transfection and siRNA silencing. J Nanosci Nanotechnol 14(1):564–576. https://doi.org/10.1166/jnn.2014.9079

    Article  CAS  PubMed  Google Scholar 

  8. Vauthier C, Zandanel C, Ramon AL (2013) Chitosan-based nanoparticles for in vivo delivery of interfering agents including siRNA. Curr Opin Colloid Interface Sci 18(5):406–418. https://doi.org/10.1016/j.cocis.2013.06.005

    Article  CAS  Google Scholar 

  9. Ragelle H, Vandermeulen G, Préat V (2013) Chitosan-based siRNA delivery systems. J Control Rel 172(1):207–218. https://doi.org/10.1016/j.jconrel.2013.08.005

    Article  CAS  Google Scholar 

  10. Ou Z, Muthukumar M (2006) Entropy and enthalpy of polyelectrolyte complexation: Langevin dynamics simulations. J Chem Phys 124(15):154902. https://doi.org/10.1063/1.2178803

    Article  CAS  PubMed  Google Scholar 

  11. Dautzenberg H, Hartmann J, Grunewald S, Brand F (1996) Stoichiometry and structure of polyelectrolyte complex particles in diluted solutions. Ber Bunsenges Phys Chem Chem Phys 100(6):1024–1032

    Article  CAS  Google Scholar 

  12. Thünemann AF, Müller M, Dautzenberg H, Joanny JF, Löwen H (2004) Polyelectrolyte complexes. Adv Polym Sci 166

    Google Scholar 

  13. Philipp B, Dautzenberg H, Linow KJ, Kötz J, Dawydoff W (1989) Polyelectrolyte complexes - recent developments and open problems. Prog Polym Sci 14(1):91–172. https://doi.org/10.1016/0079-6700(89)90018-X

    Article  CAS  Google Scholar 

  14. Fundamentals of Polyelectrolyte Complexes in Solution and the Bulk. In: Multilayer thin films. pp. 47–86. doi:https://doi.org/10.1002/3527600574.ch2

  15. Tsuchida E (1994) Formation of polyelectrolyte complexes and their structures. J Macromol Sci A 31(1):1–15. https://doi.org/10.1080/10601329409349713

    Article  Google Scholar 

  16. Ehtezazi T, Rungsardthong U, Stolnik S (2003) Thermodynamic analysis of polycation−DNA interaction applying titration microcalorimetry. Langmuir 19(22):9387–9394. https://doi.org/10.1021/la0268799

    Article  CAS  Google Scholar 

  17. Tsuchida E, Abe K (1982) Interactions between macromolecules in solution and intermacromolecular complexes. In: Tsuchida E, Abe K (eds) Interactions between macromolecules in solution and Intermacromolecular complexes. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 1–119. https://doi.org/10.1007/BFb0017549

    Chapter  Google Scholar 

  18. Comert F, Malanowski AJ, Azarikia F, Dubin PL (2016) Coacervation and precipitation in polysaccharide-protein systems. Soft Matter 12(18):4154–4161. https://doi.org/10.1039/c6sm00044d

    Article  CAS  PubMed  Google Scholar 

  19. Tirrell M (2018) Polyelectrolyte complexes: fluid or solid? ACS Central Sci 4(5):532–533. https://doi.org/10.1021/acscentsci.8b00284

    Article  CAS  Google Scholar 

  20. Bohidar H (2008) Coacervates: a novel state of soft matter - an overview. J surface Sci Technol 24:105–124

    CAS  Google Scholar 

  21. Priftis D, Tirrell M (2012) Phase behaviour and complex coacervation of aqueous polypeptide solutions. Soft Matter 8(36):9396–9405. https://doi.org/10.1039/C2SM25604E

    Article  CAS  Google Scholar 

  22. Alonso T, Irigoyen J, Iturri JJ, larena IL, Moya SE (2013) Study of the multilayer assembly and complex formation of poly(diallyldimethylammonium chloride) (PDADMAC) and poly(acrylic acid) (PAA) as a function of pH. Soft Matter 9(6):1920–1928. https://doi.org/10.1039/C2SM26884A

    Article  CAS  Google Scholar 

  23. Wang Q, Schlenoff JB (2014) The polyelectrolyte complex/coacervate continuum. Macromolecules 47(9):3108–3116. https://doi.org/10.1021/ma500500q

    Article  CAS  Google Scholar 

  24. Liu X, Chapel JP, Schatz C (2017) Structure, thermodynamic and kinetic signatures of a synthetic polyelectrolyte coacervating system. Adv Colloid Interf Sci 239:178–186. https://doi.org/10.1016/j.cis.2016.10.004

    Article  CAS  Google Scholar 

  25. Dautzenberg H (1997) Polyelectrolyte complex formation in highly aggregating systems. 1. Effect of salt: polyelectrolyte complex formation in the presence of NaCl. Macromolecules 30(25):7810–7815. https://doi.org/10.1021/ma970803f

    Article  CAS  Google Scholar 

  26. dautzenberg H (2001) Polyelectrolyte complex formation in highly aggregating systems: methodical aspects and general tendencies. In: Radeva T (ed) Physical chemistry of polyelectrolytes, vol 99. Marcel Dekker Inc., New York, pp 743–792

    Google Scholar 

  27. Utsuno K, Uludağ H (2010) Thermodynamics of polyethylenimine-DNA binding and DNA condensation. Biophys J 99(1):201–207. https://doi.org/10.1016/j.bpj.2010.04.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schatz C, Domard A, Viton C, Pichot C, Delair T (2004) Versatile and efficient formation of colloids of biopolymer-based polyelectrolyte complexes. Biomacromolecules 5(5):1882–1892. https://doi.org/10.1021/bm049786+

    Article  CAS  PubMed  Google Scholar 

  29. Delair T (2011) Colloidal polyelectrolyte complexes of chitosan and dextran sulfate towards versatile nanocarriers of bioactive molecules. Eur J Pharm Biopharm 78(1):10–18. https://doi.org/10.1016/j.ejpb.2010.12.001

    Article  CAS  PubMed  Google Scholar 

  30. Dautzenberg H, Kriz J (2003) Response of polyelectrolyte complexes to subsequent addition of salts with different cations. Langmuir 19(13):5204–5211. https://doi.org/10.1021/la0209482

    Article  CAS  Google Scholar 

  31. Buchhammer H-M, Mende M, Oelmann M (2003) Formation of mono-sized polyelectrolyte complex dispersions: effects of polymer structure, concentration and mixing conditions. Colloids Surf A Physicochem Eng Asp 218:151–159. https://doi.org/10.1016/S0927-7757(02)00582-4

    Article  CAS  Google Scholar 

  32. Dragan ES, Mihai M, Schwarz S (2006) Polyelectrolyte complex dispersions with a high colloidal stability controlled by the polyion structure and titrant addition rate. Colloids Surf A Physicochem Eng Asp 290(1):213–221. https://doi.org/10.1016/j.colsurfa.2006.05.022

    Article  CAS  Google Scholar 

  33. Müller M, Keßler B, Fröhlich J, Poeschla S, Torger B (2011) Polyelectrolyte complex nanoparticles of poly (ethyleneimine) and poly (acrylic acid): preparation and applications. Polymers 3:762–778. https://doi.org/10.3390/polym3020762

    Article  CAS  Google Scholar 

  34. Debus H, Beck-Broichsitter M, Kissel T (2012) Optimized preparation of pDNA/poly(ethylene imine) polyplexes using a microfluidic system. Lab Chip 12:2498–2506. https://doi.org/10.1039/c2lc40176b

    Article  CAS  PubMed  Google Scholar 

  35. Drogoz A, David L, Rochas C, Domard A, Delair T (2007) Polyelectrolyte complexes from polysaccharides: formation and stoichiometry monitoring. Langmuir 23(22):10950–10958. https://doi.org/10.1021/la7008545

    Article  CAS  PubMed  Google Scholar 

  36. Karibyants N, Dautzenberg H, Cölfen H (1997) Characterization of PSS/PDADMAC-co-AA polyelectrolyte complexes and their stoichiometry using analytical ultracentrifugation. Macromolecules 30(25):7803–7809. https://doi.org/10.1021/ma970802n

    Article  CAS  Google Scholar 

  37. Boeckle S, von Gersdorff K, van der Piepen S, Culmsee C, Wagner E, Ogris M (2004) Purification of polyethylenimine polyplexes highlights the role of free polycations in gene transfer. J Gene Med 6(10):1102–1111. https://doi.org/10.1002/jgm.598

    Article  CAS  PubMed  Google Scholar 

  38. Alabaraoye E, Achilonu M, Hester R (2018) Biopolymer (chitin) from various marine seashell wastes: isolation and characterization. J Polym Environ 26(6):2207–2218. https://doi.org/10.1007/s10924-017-1118-y

    Article  CAS  Google Scholar 

  39. Gautier S (2009) Ultra-pure chitosan: insight on new non-animal sources for use in advanced drug delivery & cell therapy. Drug Deliv Technol 9:20–22

    CAS  Google Scholar 

  40. Lamarque G, Cretenet M, Viton C, Domard A (2005) New route of deacetylation of α- and β-chitins by means of freeze−pump out−thaw cycles. Biomacromolecules 6(3):1380–1388. https://doi.org/10.1021/bm049322b

    Article  CAS  PubMed  Google Scholar 

  41. Vachoud L, Zydowicz N, Domard A (1997) Formation and characterisation of a physical chitin gel. Carbohydr Res 302(3):169–177. https://doi.org/10.1016/S0008-6215(97)00126-2

    Article  CAS  Google Scholar 

  42. Aiba S-i (1991) Studies on chitosan: 3. Evidence for the presence of random and block copolymer structures in partially N-acetylated chitosans. Int J Biol Macromol 13(1):40–44. https://doi.org/10.1016/0141-8130(91)90008-I

    Article  CAS  PubMed  Google Scholar 

  43. Ottey MH, Vårum KM, Smidsrød O (1996) Compositional heterogeneity of heterogeneously deacetylated chitosans. Carbohydr Polym 29(1):17–24. https://doi.org/10.1016/0144-8617(95)00154-9

    Article  Google Scholar 

  44. Aiba S-i (1993) Studies on chitosan: 6. Relationship between N-acetyl group distribution pattern and chitinase digestibility of partially N-acetylated chitosans. Int J Biol Macromol 15(4):241–245. https://doi.org/10.1016/0141-8130(93)90044-M

    Article  CAS  PubMed  Google Scholar 

  45. Cord-Landwehr S, Richter C, Wattjes J, Sreekumar S, Singh R, Basa S, El Gueddari NE, Moerschbacher BM (2020) Patterns matter part 2: chitosan oligomers with defined patterns of acetylation. React Funct Polym 151:104577. https://doi.org/10.1016/j.reactfunctpolym.2020.104577

    Article  CAS  Google Scholar 

  46. Vårum KM, Ottøy MH, Smidsrød O (2001) Acid hydrolysis of chitosans. Carbohydr Polym 46(1):89–98. https://doi.org/10.1016/S0144-8617(00)00288-5

    Article  Google Scholar 

  47. Ilyina AV, Tikhonov VE, Albulov AI, Varlamov VP (2000) Enzymic preparation of acid-free-water-soluble chitosan. Process Biochem 35(6):563–568. https://doi.org/10.1016/S0032-9592(99)00104-1

    Article  CAS  Google Scholar 

  48. Chapelle C, David G, Caillol S, Negrell C, Durand G, Desroches le Foll M, Trombotto S (2019) Water-soluble 2,5-Anhydro-d-mannofuranose chain end chitosan oligomers of a very low molecular weight: synthesis and characterization. Biomacromolecules 20(12):4353–4360. https://doi.org/10.1021/acs.biomac.9b01003

    Article  CAS  PubMed  Google Scholar 

  49. Tømmeraas K, Vårum KM, Christensen BE, Smidsrød O (2001) Preparation and characterisation of oligosaccharides produced by nitrous acid depolymerisation of chitosans. Carbohydr Res 333(2):137–144. https://doi.org/10.1016/S0008-6215(01)00130-6

    Article  PubMed  Google Scholar 

  50. Popa-Nita S, Lucas J-M, Ladavière C, David L, Domard A (2009) Mechanisms involved during the ultrasonically induced depolymerization of chitosan: characterization and control. Biomacromolecules 10(5):1203–1211. https://doi.org/10.1021/bm8014472

    Article  CAS  PubMed  Google Scholar 

  51. Trombotto S, Ladavière C, Delolme F, Domard A (2008) Chemical preparation and structural characterization of a homogeneous series of chitin/chitosan oligomers. Biomacromolecules 9(7):1731–1738. https://doi.org/10.1021/bm800157x

    Article  CAS  PubMed  Google Scholar 

  52. Xia W, Liu P, Zhang J, Chen J (2011) Biological activities of chitosan and chitooligosaccharides. Food Hydrocoll 25(2):170–179. https://doi.org/10.1016/j.foodhyd.2010.03.003

    Article  CAS  Google Scholar 

  53. Adhikari HS, Yadav PN (2018) Anticancer activity of chitosan, chitosan derivatives, and their mechanism of action. Int J Biomater 2018:2952085. doi:https://doi.org/10.1155/2018/2952085, 1

  54. Fathi M, Majidi S, Zangabad PS, Barar J, Erfan-Niya H, Omidi Y (2018) Chitosan-based multifunctional nanomedicines and theranostics for targeted therapy of cancer. Med Res Rev 38(6):2110–2136. https://doi.org/10.1002/med.21506

    Article  PubMed  Google Scholar 

  55. Briones Nieva CA, Villegas M, Cid AG, Romero AI, Bermúdez JM (2019) Chitosan applications on pharmaceutical sciences: a review. Drug Deliv Lett 9(3):167–181. https://doi.org/10.2174/2210303109666190404143906

    Article  CAS  Google Scholar 

  56. Shariatinia Z (2019) Pharmaceutical applications of chitosan. Adv Colloid Interf Sci 263:131–194. https://doi.org/10.1016/j.cis.2018.11.008

    Article  CAS  Google Scholar 

  57. Ojeda-Hernández DD, Canales-Aguirre AA, Matias-Guiu J, Gomez-Pinedo U, Mateos-Díaz JC (2020) Potential of chitosan and its derivatives for biomedical applications in the central nervous system. Front Bioeng Biotechnol 8. https://doi.org/10.3389/fbioe.2020.00389

  58. Liaqat F, Eltem R (2018) Chitooligosaccharides and their biological activities: a comprehensive review. Carbohydr Polym 184:243–259. https://doi.org/10.1016/j.carbpol.2017.12.067

    Article  CAS  PubMed  Google Scholar 

  59. Raftery R, Brien FJ, Cryan S-A (2013) Chitosan for gene delivery and orthopedic tissue engineering applications. Molecules 18(5):5611. https://doi.org/10.3390/molecules18055611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tapola NS, Lyyra ML, Kolehmainen RM, Sarkkinen ES, Schauss AG (2008) Safety aspects and cholesterol-lowering efficacy of chitosan tablets. J Am Coll Nutr 27(1):22–30. https://doi.org/10.1080/07315724.2008.10719671

    Article  CAS  PubMed  Google Scholar 

  61. Baldrick P (2010) The safety of chitosan as a pharmaceutical excipient. Regul Toxicol Pharmacol 56(3):290–299. https://doi.org/10.1016/j.yrtph.2009.09.015

    Article  CAS  PubMed  Google Scholar 

  62. Marchand C, Bachand J, Périnêt J, Baraghis E, Lamarre M, Rivard GE, De Crescenzo G, Hoemann CD (2010) C3, C5, and factor B bind to chitosan without complement activation. J Biomed Mater Res A 93A (4):1429–1441. doi:https://doi.org/10.1002/jbm.a.32638

  63. Richard I, Thibault M, De Crescenzo G, Buschmann MD, Lavertu M (2013) Ionization behavior of chitosan and chitosan-DNA polyplexes indicate that chitosan has a similar capability to induce a proton-sponge effect as PEI. Biomacromolecules 14(6):1732–1740. https://doi.org/10.1021/bm4000713

    Article  CAS  PubMed  Google Scholar 

  64. Domard A (1987) pH and c.d. measurements on a fully deacetylated chitosan: application to CuII—polymer interactions. Int J Biol Macromol 9(2):98–104. https://doi.org/10.1016/0141-8130(87)90033-X

    Article  CAS  Google Scholar 

  65. von Harpe A, Petersen H, Li Y, Kissel T (2000) Characterization of commercially available and synthesized polyethylenimines for gene delivery. J Control Release 69(2):309–322. https://doi.org/10.1016/S0168-3659(00)00317-5

    Article  Google Scholar 

  66. Sorlier P, Denuzière A, Viton C, Domard A (2001) Relation between the degree of acetylation and the electrostatic properties of chitin and chitosan. Biomacromolecules 2(3):765–772. https://doi.org/10.1021/bm015531+

    Article  CAS  PubMed  Google Scholar 

  67. Schatz C, Pichot C, Delair T, Viton C, Domard A (2003) Static light scattering studies on chitosan solutions: from macromolecular chains to colloidal dispersions. Langmuir 19(23):9896–9903. https://doi.org/10.1021/la034410n

    Article  CAS  Google Scholar 

  68. Vårum KM, Ottøy MH, Smidsrød O (1994) Water-solubility of partially N-acetylated chitosans as a function of pH: effect of chemical composition and depolymerisation. Carbohydr Polym 25(2):65–70. https://doi.org/10.1016/0144-8617(94)90140-6

    Article  Google Scholar 

  69. Rinaudo M, Pavlov G, Desbrières J (1999) Influence of acetic acid concentration on the solubilization of chitosan. Polymer 40(25):7029–7032. https://doi.org/10.1016/S0032-3861(99)00056-7

    Article  CAS  Google Scholar 

  70. Rinaudc M, Pavlov G, Desbrières J (1999) Solubilization of chitosan in strong acid medium. Int J Polym Anal Charact 5(3):267–276. https://doi.org/10.1080/10236669908009742

    Article  Google Scholar 

  71. Kubota N, Eguchi Y (1997) Facile preparation of water-soluble N-acetylated chitosan and molecular weight dependence of its water-solubility. Polym J 29(2):123–127. https://doi.org/10.1295/polymj.29.123

    Article  CAS  Google Scholar 

  72. Lamarque G, Lucas J-M, Viton C, Domard A (2005) Physicochemical behavior of homogeneous series of acetylated chitosans in aqueous solution: role of various structural parameters. Biomacromolecules 6(1):131–142. https://doi.org/10.1021/bm0496357

    Article  CAS  PubMed  Google Scholar 

  73. Anthonsen MW, Vårum KM, Hermansson AM, Smidsrød O, Brant DA (1994) Aggregates in acidic solutions of chitosans detected by static laser light scattering. Carbohydr Polym 25(1):13–23. https://doi.org/10.1016/0144-8617(94)90157-0

    Article  CAS  Google Scholar 

  74. Sorlier P, Rochas C, Morfin I, Viton C, Domard A (2003) Light scattering studies of the solution properties of chitosans of varying degrees of acetylation. Biomacromolecules 4(4):1034–1040. https://doi.org/10.1021/bm034054n

    Article  CAS  PubMed  Google Scholar 

  75. Philippova OE, Volkov EV, Sitnikova NL, Khokhlov AR, Desbrieres J, Rinaudo M (2001) Two types of hydrophobic aggregates in aqueous solutions of chitosan and its hydrophobic derivative. Biomacromolecules 2(2):483–490. https://doi.org/10.1021/bm005649a

    Article  CAS  PubMed  Google Scholar 

  76. Kulikov S, Tikhonov V, Blagodatskikh I, Bezrodnykh E, Lopatin S, Khairullin R, Philippova Y, Abramchuk S (2012) Molecular weight and pH aspects of the efficacy of oligochitosan against methicillin-resistant Staphylococcus aureus (MRSA). Carbohydr Polym 87(1):545–550. https://doi.org/10.1016/j.carbpol.2011.08.017

    Article  CAS  Google Scholar 

  77. Philippova OE, Korchagina EV, Volkov EV, Smirnov VA, Khokhlov AR, Rinaudo M (2012) Aggregation of some water-soluble derivatives of chitin in aqueous solutions: role of the degree of acetylation and effect of hydrogen bond breaker. Carbohydr Polym 87(1):687–694. https://doi.org/10.1016/j.carbpol.2011.08.043

    Article  CAS  Google Scholar 

  78. Blagodatskikh IV, Bezrodnykh EA, Abramchuk SS, Muranov AV, Sinitsyna OV, Khokhlov AR, Tikhonov VE (2013) Short chain chitosan solutions: self-assembly and aggregates disruption effects. J Polym Res 20(2):73. https://doi.org/10.1007/s10965-013-0073-0

    Article  CAS  Google Scholar 

  79. Domard A (2011) A perspective on 30 years research on chitin and chitosan. Carbohydr Polym 84(2):696–703. https://doi.org/10.1016/j.carbpol.2010.04.083

    Article  CAS  Google Scholar 

  80. Schatz C, Viton C, Delair T, Pichot C, Domard A (2003) Typical physicochemical behaviors of chitosan in aqueous solution. Biomacromolecules 4(3):641–648. https://doi.org/10.1021/bm025724c

    Article  CAS  PubMed  Google Scholar 

  81. Wu D, Zhu L, Li Y, Zhang X, Xu S, Yang G, Delair T (2020) Chitosan-based colloidal polyelectrolyte complexes for drug delivery: a review. Carbohydr Polym 238:116126. https://doi.org/10.1016/j.carbpol.2020.116126

    Article  CAS  PubMed  Google Scholar 

  82. Il’ina AV, Varlamov VP (2005) Chitosan-based polyelectrolyte complexes: a review. Appl Biochem Microbiol 41(1):5–11. https://doi.org/10.1007/s10438-005-0002-z

    Article  Google Scholar 

  83. Kayitmazer AB, Koksal AF, Kilic Iyilik E (2015) Complex coacervation of hyaluronic acid and chitosan: effects of pH, ionic strength, charge density, chain length and the charge ratio. Soft Matter 11(44):8605–8612. https://doi.org/10.1039/C5SM01829C

    Article  CAS  PubMed  Google Scholar 

  84. Hayatsu H, Kubo T, Tanaka Y, Negishi K (1997) Polynucleotide-chitosan complex, an insoluble but reactive form of polynucleotide. Chem Pharm Bull 45(8):1363–1368. https://doi.org/10.1248/cpb.45.1363

    Article  CAS  Google Scholar 

  85. Ma PL, Lavertu M, Winnik FM, Buschmann MD (2009) New insights into chitosan−DNA interactions using isothermal titration microcalorimetry. Biomacromolecules 10(6):1490–1499. https://doi.org/10.1021/bm900097s

    Article  CAS  PubMed  Google Scholar 

  86. Drogoz A, Munier S, Verrier B, David L, Domard A, Delair T (2008) Towards biocompatible vaccine delivery systems: interactions of colloidal PECs based on polysaccharides with HIV-1 p24 antigen. Biomacromolecules 9(2):583–591. https://doi.org/10.1021/bm701154h

    Article  CAS  PubMed  Google Scholar 

  87. Schatz C, Lucas JM, Viton C, Domard A, Pichot C, Delair T (2004) Formation and properties of positively charged colloids based on polyelectrolyte complexes of biopolymers. Langmuir 20(18):7766–7778. https://doi.org/10.1021/la049460m

    Article  CAS  PubMed  Google Scholar 

  88. Weber C, Drogoz A, David L, Domard A, Charles MH, Verrier B, Delair T (2010) Polysaccharide-based vaccine delivery systems: macromolecular assembly, interactions with antigen presenting cells, and in vivo immunomonitoring. J Biomed Mater Res Part A 93(4):1322–1334. https://doi.org/10.1002/jbm.a.32605

    Article  CAS  Google Scholar 

  89. Sæther HV, Holme HK, Maurstad G, Smidsrød O, Stokke BT (2008) Polyelectrolyte complex formation using alginate and chitosan. Carbohydr Polym 74(4):813–821. https://doi.org/10.1016/j.carbpol.2008.04.048

    Article  CAS  Google Scholar 

  90. Hansson A, Di Francesco T, Falson F, Rousselle P, Jordan O, Borchard G (2012) Preparation and evaluation of nanoparticles for directed tissue engineering. Int J Pharm 439(1):73–80. https://doi.org/10.1016/j.ijpharm.2012.09.053

    Article  CAS  PubMed  Google Scholar 

  91. Parajó Y, d’Angelo I, Welle A, Garcia-Fuentes M, Alonso MJ (2010) Hyaluronic acid/chitosan nanoparticles as delivery vehicles for VEGF and PDGF-BB. Drug Deliv 17(8):596–604. https://doi.org/10.3109/10717544.2010.509357

    Article  CAS  PubMed  Google Scholar 

  92. Lin Y-H, Mi F-L, Chen C-T, Chang W-C, Peng S-F, Liang H-F, Sung H-W (2007) Preparation and characterization of nanoparticles shelled with chitosan for oral insulin delivery. Biomacromolecules 8(1):146–152. https://doi.org/10.1021/bm0607776

    Article  CAS  PubMed  Google Scholar 

  93. Polexe RC, Terrat C, Verrier B, Cuvillier A, Champier G, Delair T (2013) Elaboration of targeted nanodelivery systems based on colloidal polyelectrolyte complexes (PEC) of chitosan (CH)-dextran sulphate (DS). Eur J Nanomed 5(1):39–49. https://doi.org/10.1515/ejnm-2013-0002

    Article  CAS  Google Scholar 

  94. Polexe RC, Delair T (2013) Elaboration of stable and antibody functionalized positively charged colloids by polyelectrolyte complexation between chitosan and hyaluronic acid. Molecules 18(7):8563–8578. https://doi.org/10.3390/molecules18078563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wu D, Delair T (2015) Stabilization of chitosan/hyaluronan colloidal polyelectrolyte complexes in physiological conditions. Carbohydr Polym 119:149–158. https://doi.org/10.1016/j.carbpol.2014.11.042

    Article  CAS  PubMed  Google Scholar 

  96. Wu D, Ensinas A, Verrier B, Primard C, Cuvillier A, Champier G, Paul S, Delair T (2016) Zinc-stabilized chitosan-chondroitin sulfate nanocomplexes for HIV-1 infection inhibition application. Mol Pharm 13(9):3279–3291. https://doi.org/10.1021/acs.molpharmaceut.6b00568

    Article  CAS  PubMed  Google Scholar 

  97. Giacalone G, Hillaireau H, Capiau P, Chacun H, Reynaud F, Fattal E (2014) Stabilization and cellular delivery of chitosan–polyphosphate nanoparticles by incorporation of iron. J Control Release 194:211–219. https://doi.org/10.1016/j.jconrel.2014.08.022

    Article  CAS  PubMed  Google Scholar 

  98. Alatorre-Meda M, Taboada P, Hartl F, Wagner T, Freis M, Rodríguez JR (2011) The influence of chitosan valence on the complexation and transfection of DNA: the weaker the DNA–chitosan binding the higher the transfection efficiency. Colloids Surf B: Biointerfaces 82(1):54–62. https://doi.org/10.1016/j.colsurfb.2010.08.013

    Article  CAS  PubMed  Google Scholar 

  99. Delas T, Mock-Joubert M, Faivre J, Hofmaier M, Sandre O, Dole F, Chapel JP, Crépet A, Trombotto S, Delair T, Schatz C (2019) Effects of chain length of chitosan oligosaccharides on solution properties and complexation with siRNA. Polymers 11(8):1236

    Article  CAS  Google Scholar 

  100. Holzerny P, Ajdini B, Heusermann W, Bruno K, Schuleit M, Meinel L, Keller M (2012) Biophysical properties of chitosan/siRNA polyplexes: profiling the polymer/siRNA interactions and bioactivity. J Control Release 157(2):297–304. https://doi.org/10.1016/j.jconrel.2011.08.023

    Article  CAS  PubMed  Google Scholar 

  101. Strand SP, Danielsen S, Christensen BE, Vårum KM (2005) Influence of chitosan structure on the formation and stability of DNA−chitosan polyelectrolyte complexes. Biomacromolecules 6(6):3357–3366. https://doi.org/10.1021/bm0503726

    Article  CAS  PubMed  Google Scholar 

  102. Plank C, Tang MX, Wolfe AR, Szoka FC (1999) Branched cationic peptides for gene delivery: role of type and number of cationic residues in formation and in vitro activity of DNA Polyplexes. Hum Gene Ther 10(2):319–332. https://doi.org/10.1089/10430349950019101

    Article  CAS  PubMed  Google Scholar 

  103. Tsuchida E, Osada Y (1974) The rôle of the chain length in the stability of polyion complexes. Die Makromolekulare Chemie 175(2):593–601. https://doi.org/10.1002/macp.1974.021750220

    Article  CAS  Google Scholar 

  104. Kharenko AV, Starikova EA, Lutsenko VV, Zezin AB (1976) Study of cooperative reactions of oligophosphates and polyphosphates with polybases. Vysokomolekulyarnye Soedineniya Seriya A 18(7):1604–1608

    CAS  Google Scholar 

  105. Zandanel C, Noiray M, Vauthier C (2020) Counterion of chitosan influences thermodynamics of association of siRNA with a chitosan-based siRNA carrier. Pharm Res 37(2):22. https://doi.org/10.1007/s11095-019-2751-z

    Article  CAS  PubMed  Google Scholar 

  106. Alameh M, Lavertu M, Tran-Khanh N, Chang C-Y, Lesage F, Bail M, Darras V, Chevrier A, Buschmann MD (2018) siRNA delivery with chitosan: influence of chitosan molecular weight, degree of deacetylation, and amine to phosphate ratio on in vitro silencing efficiency, hemocompatibility, biodistribution, and in vivo efficacy. Biomacromolecules 19(1):112–131. https://doi.org/10.1021/acs.biomac.7b01297

    Article  CAS  PubMed  Google Scholar 

  107. Santos JL, Ren Y, Vandermark J, Archang MM, Williford J-M, Liu H-W, Lee J, Wang T-H, Mao H-Q (2016) Continuous production of discrete plasmid DNA-polycation nanoparticles using flash nanocomplexation. Small 12(45):6214–6222. https://doi.org/10.1002/smll.201601425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tavakoli Naeini A, Soliman O, Alameh M, Lavertu M, Buschmann M (2017) Automated in-line mixing system for large scale production of chitosan-based polyplexes. J Colloid Interface Sci 500:253. https://doi.org/10.1016/j.jcis.2017.04.013

    Article  CAS  PubMed  Google Scholar 

  109. Koh CG, Kang X, Xie Y, Fei Z, Guan J, Yu B, Zhang X, Lee LJ (2009) Delivery of polyethylenimine/DNA complexes assembled in a microfluidics device. Mol Pharm 6(5):1333–1342. https://doi.org/10.1021/mp900016q

    Article  CAS  PubMed  Google Scholar 

  110. Fernandes JC, Qiu X, Winnik FM, Benderdour M, Zhang X, Dai K, Shi Q (2012) Low molecular weight chitosan conjugated with folate for siRNA delivery in vitro: optimization studies. Int J Nanomedicine 7:5833–5845. https://doi.org/10.2147/ijn.s35567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Malmo J, Sørgård H, Vårum KM, Strand SP (2012) siRNA delivery with chitosan nanoparticles: molecular properties favoring efficient gene silencing. J Control Release 158(2):261–268. https://doi.org/10.1016/j.jconrel.2011.11.012

    Article  CAS  PubMed  Google Scholar 

  112. Ragelle H, Riva R, Vandermeulen G, Naeye B, Pourcelle V, Le Duff CS, D’Haese C, Nysten B, Braeckmans K, De Smedt SC, Jérôme C, Préat V (2014) Chitosan nanoparticles for siRNA delivery: optimizing formulation to increase stability and efficiency. J Control Release 176:54–63. https://doi.org/10.1016/j.jconrel.2013.12.026

    Article  CAS  PubMed  Google Scholar 

  113. Zezin AB, Kabanov VA (1982) A new class of complex water-soluble polyelectrolytes. Russ Chem Rev 51(9):833–855. https://doi.org/10.1070/rc1982v051n09abeh002921

    Article  Google Scholar 

  114. Liu X, Howard KA, Dong M, Andersen MØ, Rahbek UL, Johnsen MG, Hansen OC, Besenbacher F, Kjems J (2007) The influence of polymeric properties on chitosan/siRNA nanoparticle formulation and gene silencing. Biomaterials 28(6):1280–1288. https://doi.org/10.1016/j.biomaterials.2006.11.004

    Article  CAS  PubMed  Google Scholar 

  115. Ying Q, Chu B (1987) Overlap concentration of macromolecules in solution. Macromolecules 20(2):362–366. https://doi.org/10.1021/ma00168a023

    Article  CAS  Google Scholar 

  116. Nielsen EJB, Nielsen JM, Becker D, Karlas A, Prakash H, Glud SZ, Merrison J, Besenbacher F, Meyer TF, Kjems J, Howard KA (2010) Pulmonary gene silencing in transgenic EGFP mice using aerosolised chitosan/siRNA nanoparticles. Pharm Res 27(12):2520–2527. https://doi.org/10.1007/s11095-010-0255-y

    Article  CAS  PubMed  Google Scholar 

  117. Veilleux D, Gopalakrishna Panicker RK, Chevrier A, Biniecki K, Lavertu M, Buschmann MD (2018) Lyophilisation and concentration of chitosan/siRNA polyplexes: influence of buffer composition, oligonucleotide sequence, and hyaluronic acid coating. J Colloid Interface Sci 512:335–345. https://doi.org/10.1016/j.jcis.2017.09.084

    Article  CAS  PubMed  Google Scholar 

  118. Mel’nikova YS, Lindman B (2000) pH-controlled DNA condensation in the presence of dodecyldimethylamine oxide. Langmuir 16(14):5871–5878. https://doi.org/10.1021/la991382t

    Article  CAS  Google Scholar 

  119. Ma PL, Buschmann MD, Winnik FM (2010) One-step analysis of DNA/chitosan complexes by field-flow fractionation reveals particle size and free chitosan content. Biomacromolecules 11(3):549–554. https://doi.org/10.1021/bm901345q

    Article  CAS  PubMed  Google Scholar 

  120. Pereira P, Jorge AF, Martins R, Pais AACC, Sousa F, Figueiras A (2012) Characterization of polyplexes involving small RNA. J Colloid Interface Sci 387(1):84–94. https://doi.org/10.1016/j.jcis.2012.07.088

    Article  CAS  PubMed  Google Scholar 

  121. Alameh M, Dejesus D, Jean M, Darras V, Thibault M, Lavertu M, Buschmann MD, Merzouki A (2012) Low molecular weight chitosan nanoparticulate system at low N:P ratio for nontoxic polynucleotide delivery. Int J Nanomedicine 7:1399–1414. https://doi.org/10.2147/ijn.S26571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Howard KA, Rahbek UL, Liu X, Damgaard CK, Glud SZ, Andersen MØ, Hovgaard MB, Schmitz A, Nyengaard JR, Besenbacher F, Kjems J (2006) RNA interference <em>in vitro</em> and <em>in vivo</em> using a novel chitosan/siRNA nanoparticle system. Mol Ther 14(4):476–484. https://doi.org/10.1016/j.ymthe.2006.04.010

    Article  CAS  PubMed  Google Scholar 

  123. Xu S, Dong M, Liu X, Howard KA, Kjems J, Besenbacher F (2007) Direct force measurements between siRNA and chitosan molecules using force spectroscopy. Biophys J 93(3):952–959. https://doi.org/10.1529/biophysj.106.093229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ma PL, Lavertu M, Winnik FM, Buschmann MD (2017) Stability and binding affinity of DNA/chitosan complexes by polyanion competition. Carbohydr Polym 176:167–176. https://doi.org/10.1016/j.carbpol.2017.08.002

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Delas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Schatz, C., Delas, T. (2021). Fundamental and Practical Aspects in the Formulation of Colloidal Polyelectrolyte Complexes of Chitosan and siRNA. In: Ditzel, H.J., Tuttolomondo, M., Kauppinen, S. (eds) Design and Delivery of SiRNA Therapeutics. Methods in Molecular Biology, vol 2282. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1298-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1298-9_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1297-2

  • Online ISBN: 978-1-0716-1298-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics