Skip to main content

siRNA Design and Delivery Based on Carbon Nanotubes

  • Protocol
  • First Online:
Design and Delivery of SiRNA Therapeutics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2282))

Abstract

Owing to the unique physical and chemical properties of carbon nanotubes, they have been widely explored as delivery vectors for proteins, and nucleic acid etc. after functionalization. Particularly, the modification of carbon nanotubes suited for the delivery of siRNA has been intensely studied over the past decade. The assay described in this chapter allows for realizable quantification of siRNA binding on carbon nanotube-based materials using gel electrophoresis and silencing by flow cytometry when the siRNA complexes are delivered in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tang G (2005) siRNA and miRNA: an insight into RISCs. Trends Biochem Sci 30(2):106–114. https://doi.org/10.1016/j.tibs.2004.12.007

    Article  CAS  PubMed  Google Scholar 

  2. Wang J, Lu Z, Wientjes MG, Au JL (2010) Delivery of siRNA therapeutics: barriers and carriers. AAPS J 12(4):492–503. https://doi.org/10.1208/s12248-010-9210-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Grimm D (2009) Small silencing RNAs: state-of-the-art. Adv Drug Deliv Rev 61(9):672–703. https://doi.org/10.1016/j.addr.2009.05.002

    Article  CAS  PubMed  Google Scholar 

  4. Nayerossadat N, Maedeh T, Ali PA (2012) Viral and nonviral delivery systems for gene delivery. Adv Biomed Res 1:27. https://doi.org/10.4103/2277-9175.98152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Teimouri M, Nia AH, Abnous K, Eshghi H, Ramezani M (2016) Graphene oxide-cationic polymer conjugates: synthesis and application as gene delivery vectors. Plasmid 84–85:51–60. https://doi.org/10.1016/j.plasmid.2016.03.002

    Article  CAS  PubMed  Google Scholar 

  6. De Smedt SC, Demeester J, Hennink WE (2000) Cationic polymer based gene delivery systems. Pharm Res 17(2):113–126. https://doi.org/10.1023/a:1007548826495

    Article  PubMed  Google Scholar 

  7. Yuba E, Kanda Y, Yoshizaki Y, Teranishi R, Harada A, Sugiura K, Izawa T, Yamate J, Sakaguchi N, Koiwai K, Kono K (2015) pH-sensitive polymer-liposome-based antigen delivery systems potentiated with interferon-gamma gene lipoplex for efficient cancer immunotherapy. Biomaterials 67:214–224. https://doi.org/10.1016/j.biomaterials.2015.07.031

    Article  CAS  PubMed  Google Scholar 

  8. Liu Y, Fong S, Debs RJ (2003) Cationic liposome-mediated gene delivery in vivo. Methods Enzymol 373:536–550. https://doi.org/10.1016/S0076-6879(03)73034-1

    Article  CAS  PubMed  Google Scholar 

  9. Herrero MA, Toma FM, Al-Jamal KT, Kostarelos K, Bianco A, Da Ros T, Bano F, Casalis L, Scoles G, Prato M (2009) Synthesis and characterization of a carbon nanotube-dendron series for efficient siRNA delivery. J Am Chem Soc 131(28):9843–9848. https://doi.org/10.1021/ja903316z

    Article  CAS  PubMed  Google Scholar 

  10. Liu Z, Winters M, Holodniy M, Dai H (2007) siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. Angew Chem Int Ed Engl 46(12):2023–2027. https://doi.org/10.1002/anie.200604295

    Article  CAS  PubMed  Google Scholar 

  11. Li D, Sharili AS, Connelly J, Gautrot JE (2018) Highly stable RNA capture by dense cationic polymer brushes for the design of cytocompatible, serum-stable SiRNA delivery vectors. Biomacromolecules 19(2):606–615. https://doi.org/10.1021/acs.biomac.7b01686

    Article  CAS  PubMed  Google Scholar 

  12. Faruqu FN, Xu L, Al-Jamal KT (2018) Preparation of exosomes for siRNA delivery to cancer cells. J Vis Exp (142). https://doi.org/10.3791/58814

  13. Dean DA (2006) Gene delivery by direct injection (microinjection) using a controlled-flow system. Cold Spring Harb Protoc 2006(7). https://doi.org/10.1101/pdb.prot4654

  14. Yen MC, Lai MD (2013) Biolistic DNA delivery to mice with the low pressure gene gun. Methods Mol Biol 940:169–174. https://doi.org/10.1007/978-1-62703-110-3_14

    Article  CAS  PubMed  Google Scholar 

  15. Liu Y, Song Z, Zheng N, Nagasaka K, Yin L, Cheng J (2018) Systemic siRNA delivery to tumors by cell-penetrating alpha-helical polypeptide-based metastable nanoparticles. Nanoscale 10(32):15339–15349. https://doi.org/10.1039/c8nr03976c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yin L, Zheng N, Cheng J (2016) Highly efficient SiRNA delivery mediated by cationic helical polypeptides and polypeptide-based nanosystems. Methods Mol Biol 1364:37–47. https://doi.org/10.1007/978-1-4939-3112-5_4

    Article  CAS  PubMed  Google Scholar 

  17. Tuttolomondo M, Casella C, Hansen PL, Polo E, Herda LM, Dawson KA, Ditzel HJ, Mollenhauer J (2017) Human DMBT1-derived cell-penetrating peptides for intracellular siRNA delivery. Mol Ther Nucleic Acids 8:264–276. https://doi.org/10.1016/j.omtn.2017.06.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. El-Andaloussi S, Lee Y, Lakhal-Littleton S, Li J, Seow Y, Gardiner C, Alvarez-Erviti L, Sargent IL, Wood MJ (2012) Exosome-mediated delivery of siRNA in vitro and in vivo. Nat Protoc 7(12):2112–2126. https://doi.org/10.1038/nprot.2012.131

    Article  CAS  PubMed  Google Scholar 

  19. van den Boorn JG, Schlee M, Coch C, Hartmann G (2011) SiRNA delivery with exosome nanoparticles. Nat Biotechnol 29(4):325–326. https://doi.org/10.1038/nbt.1830

    Article  CAS  PubMed  Google Scholar 

  20. Li S, Huang L (2000) Nonviral gene therapy: promises and challenges. Gene Ther 7(1):31–34. https://doi.org/10.1038/sj.gt.3301110

  21. Pack DW, Hoffman AS, Pun S, Stayton PS (2005) Design and development of polymers for gene delivery. Nat Rev Drug Discov 4(7):581–593. https://doi.org/10.1038/nrd1775

  22. de Lima MCP, Simoes S, Pires P, Faneca H, Duzgunes N (2001) Cationic lipid-DNA complexes in gene delivery: from biophysics to biological applications. Adv Drug Deliv Rev 47(2–3):277–294. https://doi.org/10.1016/s0169-409x(01)00110-7

  23. Fischer D, Bieber T, Li Y, Elsässer H-P, Kissel T (1999) A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharm Res 16(8):1273–1279. https://doi.org/10.1023/a:1014861900478

    Article  CAS  PubMed  Google Scholar 

  24. Bartlett DW, Davis ME (2006) Insights into the kinetics of siRNA-mediated gene silencing from live-cell and live-animal bioluminescent imaging. Nucleic Acids Res 34(1):322–333. https://doi.org/10.1093/nar/gkj439

  25. Jones CH, Chen CK, Ravikrishnan A, Rane S, Pfeifer BA (2013) Overcoming nonviral gene delivery barriers: perspective and future. Mol Pharm 10(11):4082–4098. https://doi.org/10.1021/mp400467x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Al-Jamal KT, Toma FM, Yilmazer A, Ali-Boucetta H, Nunes A, Herrero MA, Tian B, Eddaoudi A, Al-Jamal WT, Bianco A, Prato M, Kostarelo K (2010) Enhanced cellular internalization and gene silencing with a series of cationic dendron-multiwalled carbon nanotube:siRNA complexes. FASEB J 24(11):4354–4365. https://doi.org/10.1096/fj.09-141036

    Article  CAS  PubMed  Google Scholar 

  27. Al-Jamal KT, Gherardini L, Bardi G, Nunes A, Guo C, Bussy C, Herrero MA, Bianco A, Prato M, Kostarelos K, Pizzorusso T (2011) Functional motor recovery from brain ischemic insult by carbon nanotube-mediated siRNA silencing. Proc Natl Acad Sci U S A 108(27):10952–10957. https://doi.org/10.1073/pnas.1100930108

    Article  PubMed  PubMed Central  Google Scholar 

  28. Al-Jamal KT, Nerl H, Muller KH, Ali-Boucetta H, Li S, Haynes PD, Jinschek JR, Prato M, Bianco A, Kostarelos K, Porter AE (2011) Cellular uptake mechanisms of functionalised multi-walled carbon nanotubes by 3D electron tomography imaging. Nanoscale 3(6):2627–2635. https://doi.org/10.1039/c1nr10080g

    Article  CAS  PubMed  Google Scholar 

  29. Nunes A, Amsharov N, Guo C, Van den Bossche J, Santhosh P, Karachalios TK, Nitodas SF, Burghard M, Kostarelos K, Al-Jamal KT (2010) Hybrid polymer-grafted multiwalled carbon nanotubes for in vitro gene delivery. Small 6(20):2281–2291. https://doi.org/10.1002/smll.201000864

    Article  CAS  PubMed  Google Scholar 

  30. Al-Jamal KT, Nunes A, Methven L, Ali-Boucetta H, Li S, Toma FM, Herrero MA, Al-Jamal WT, ten Eikelder HM, Foster J, Mather S, Prato M, Bianco A, Kostarelos K (2012) Degree of chemical functionalization of carbon nanotubes determines tissue distribution and excretion profile. Angew Chem Int Ed Engl 51(26):6389–6393. https://doi.org/10.1002/anie.201201991

    Article  CAS  PubMed  Google Scholar 

  31. Varkouhi AK, Foillard S, Lammers T, Schiffelers RM, Doris E, Hennink WE, Storm G (2011) SiRNA delivery with functionalized carbon nanotubes. Int J Pharm 416(2):419–425. https://doi.org/10.1016/j.ijpharm.2011.02.009

    Article  CAS  PubMed  Google Scholar 

  32. Georgakilas V, Kordatos K, Prato M, Guldi DM, Holzinger M, Hirsch A (2002) Organic functionalization of carbon nanotubes. J Am Chem Soc 124(5):760–761. https://doi.org/10.1021/ja016954m

    Article  CAS  PubMed  Google Scholar 

  33. Podesta JE, Al-Jamal KT, Herrero MA, Tian B, Ali-Boucetta H, Hegde V, Bianco A, Prato M, Kostarelos K (2009) Antitumor activity and prolonged survival by carbon-nanotube-mediated therapeutic siRNA silencing in a human lung xenograft model. Small 5(10):1176–1185. https://doi.org/10.1002/smll.200801572

    Article  CAS  PubMed  Google Scholar 

  34. McCarroll J, Baigude H, Yang CS, Rana TM (2010) Nanotubes functionalized with lipids and natural amino acid dendrimers: a new strategy to create nanomaterials for delivering systemic RNAi. Bioconjug Chem 21(1):56–63. https://doi.org/10.1021/bc900296z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Siu KS, Zheng X, Liu Y, Zhang Y, Zhang X, Chen D, Yuan K, Gillies ER, Koropatnick J, Min WP (2014) Single-walled carbon nanotubes noncovalently functionalized with lipid modified polyethylenimine for siRNA delivery in vitro and in vivo. Bioconjug Chem 25(10):1744–1751. https://doi.org/10.1021/bc500280q

    Article  CAS  PubMed  Google Scholar 

  36. Kam NW, Liu Z, Dai H (2005) Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J Am Chem Soc 127(36):12492–12493. https://doi.org/10.1021/ja053962k

    Article  CAS  PubMed  Google Scholar 

  37. Chiu Y-L, Ali A, Chu C-y, Cao H, Rana TM (2004) Visualizing a correlation between siRNA localization, cellular uptake, and RNAi in living cells. Chem Biol 11(8):1165–1175. https://doi.org/10.1016/j.chembiol.2004.06.006

    Article  CAS  PubMed  Google Scholar 

  38. Anderson T, Hu R, Yang C, Yoon HS, Yong K-T (2014) Pancreatic cancer gene therapy using an siRNA-functionalized single walled carbon nanotubes (SWNTs) nanoplex. Biomater Sci 2(9):1244–1253. https://doi.org/10.1039/C4BM00019F

    Article  CAS  PubMed  Google Scholar 

  39. Cheng A, Vlassov AV, Magdaleno S (2011) Quantification of siRNAs in vitro and in vivo. In: Goodchild J (ed) Therapeutic oligonucleotides: methods and protocols. Humana, Totowa, NJ, pp 183–197. https://doi.org/10.1007/978-1-61779-188-8_12

    Chapter  Google Scholar 

  40. Tuttolomondo M, Ditzel HJ (2020) Simple FRET electrophoresis method for precise and dynamic evaluation of serum siRNA stability. ACS Med Chem Lett 11(2):195–202. https://doi.org/10.1021/acsmedchemlett.9b00472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Brody JR, Kern SE (2004) Sodium boric acid: a Tris-free, cooler conductive medium for DNA electrophoresis. BioTechniques 36(2):214–216. https://doi.org/10.2144/04362BM02

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khuloud T. Al-Jamal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Li, D., Al-Jamal, K.T. (2021). siRNA Design and Delivery Based on Carbon Nanotubes. In: Ditzel, H.J., Tuttolomondo, M., Kauppinen, S. (eds) Design and Delivery of SiRNA Therapeutics. Methods in Molecular Biology, vol 2282. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1298-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1298-9_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1297-2

  • Online ISBN: 978-1-0716-1298-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics