Skip to main content

Redox Titration of Flavoproteins: An Overview

  • Protocol
  • First Online:
Flavins and Flavoproteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2280))

Abstract

Redox titration of flavoproteins allows to detect and analyze (1) the determinants of the stabilization of individual redox forms of the flavin by the protein; (2) the binding of the redox-active cofactor to the protein; (3) the effects of other components of the systems (such as micro- or macromolecular interactors) on parameters 1 and 2; (4) the pattern of electron flow to and from the flavin cofactor to other redox-active chemical species, including those present in the protein itself or in its physiological partners. This overview presents and discusses the fundamentals of the methodological approaches most commonly used for these purposes, and illustrates how data may be obtained in a reliable way, and how they can be read and interpreted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bruice TC (1980) Mechanisms of flavin catalysis. Acc Chem Res 13:256–262

    Article  CAS  Google Scholar 

  2. Mayhew SG (1999) The effects of pH and semiquinone formation on the oxidation-reduction potentials of flavin mononucleotide—a reappraisal. Eur J Bioch 265:698–702

    Article  CAS  Google Scholar 

  3. Edmondson DE, Tollin G (1983) Semiquinone formation in flavo- and metalloflavoproteins. In: Radicals in biochemistry. topics in current chemistry, vol 108. Springer, Berlin, pp 109–138

    Chapter  Google Scholar 

  4. Tedeschi G, Chen S, Massey V (1995) DT-diaphorase—redox potential, steady-state, and rapid reaction studies. J Biol Chem 270:1198–1204

    Article  CAS  Google Scholar 

  5. Ludwig ML, Pattridge KA, Metzger AL, Dixon MM, Eren M, Feng Y, Swenson RP (1997) Control of oxidation-reduction potentials in flavodoxin from Clostridium beijerinckii: the role of conformation changes. Biochemistry 36:1259–1280

    Article  CAS  Google Scholar 

  6. Pollegioni L, Porrini D, Molla G, Pilone MS (2000) Redox potentials and their pH dependence of D-amino-acid oxidase of Rhodotorula gracilis and Trigonopsis variabilis. Eur J Bioch 267:6624–6632

    Article  CAS  Google Scholar 

  7. Gutman M, Bonomi F, Pagani S, Cerletti P, Kroneck P (1980) Modulation of the flavin redox potential as mode of regulation of succinate-dehydrogenase activity. Biochim Biophys Acta 591:400–408

    Article  CAS  Google Scholar 

  8. Tegoni M, Janot JM, Labeyrie F (1986) Regulation of dehydrogenases one-electron transferases by modification of flavin redox potentials—effect of product binding on semiquinone stabilization in yeast flavocytochrome-b2. Eur J Biochem 155:491–501

    Article  CAS  Google Scholar 

  9. Ramsay RR, Hunter DJB (2002) Inhibitors alter the spectrum and redox properties of monoamine oxidase A. Biochim Biophys Acta 1601:178–184

    Article  CAS  Google Scholar 

  10. Bonomi F, Pagani S, Cerletti P, Giori C (1983) Modification of the thermodynamic properties of the electron-transferring groups in mitochondrial succinate-dehydrogenase upon binding of succinate. Eur J Biochem 134:439–445

    Article  CAS  Google Scholar 

  11. Stewart RC, Massey V (1985) Potentiometric studies of native and flavin-substituted Old Yellow Enzyme. J Biol Chem 260:13639–13647

    Article  CAS  Google Scholar 

  12. Ishikita H (2013) Contributions of protein environment to the reduction potentials of flavin-containing proteins. Handbook of flavoproteins: complex flavoproteins, dehydrogenases and physical methods, vol 2. De Gryter, Berlin, pp 321–334

    Google Scholar 

  13. Zhang P, Yuly JL, Lubner CE, Mulder DW, King PW, Peters JW, Beratan DN (2017) Electron bifurcation: thermodynamics and kinetics of two-electron brokering in biological redox chemistry. Acc Chem Res 50:2410–2417

    Article  CAS  Google Scholar 

  14. Buey RM, Arellano JB, Lopez-Maury L, Galindo-Trigo S, Velàzquez-Campoy A, Revuelta JL, de Pereda JM, Florencio FJ, Schuermann P, Buchanan BB, Balsera M (2017) Unprecedented pathway of reducing equivalents in a diflavin-linked disulfide oxidoreductase. Proc Natl Acad Sci U S A 114:12725–12730

    Article  CAS  Google Scholar 

  15. Werther T, Wahlefeld S, Salewski J, Kuhlmann U, Zebger I, Hildebrandt P, Dobbek H (2017) Redox-dependent substrate-cofactor interactions in the Michaelis-complex of a flavin-dependent oxidoreductase. Nat Commun 8:Art nr 16084

    Article  Google Scholar 

  16. Cheng VWT, Piragasam RS, Rothery RA, Maklashina E, Cecchini G, Weiner JH (2015) Redox state of flavin adenine dinucleotide drives substrate binding and product release in Escherichia coli succinate dehydrogenase. Biochemistry 54:1043–1052

    Article  CAS  Google Scholar 

  17. Senda M, Kishigami S, Kimura S, Fukuda M, Ishida T, Senda T (2007) Molecular mechanism of the redox-dependent interaction between NADH-dependent ferredoxin reductase and Rieske-type [2Fe-2S] ferredoxin. J Mol Biol 373:382–400

    Article  CAS  Google Scholar 

  18. Senda T, Senda M, Kimura S, Ishida T (2009) Redox control of protein conformation in flavoproteins. Antiox Redox Signal 11:1741–1766

    Article  CAS  Google Scholar 

  19. Becker DF, Zhu W, Moxley MA (2011) Flavin redox switching of protein functions. Antiox Redox Signal 14:1079–1091

    Article  CAS  Google Scholar 

  20. Vaidya AT, Top D, Manahan CC, Tokuda JM, Zhang S, Pollack L, Young MW, Crane BR (2013) Flavin reduction activates Drosophila cryptochrome. Proc Natl Acad Sci U S A 110:20455–20460

    Article  CAS  Google Scholar 

  21. Samanta D, Widom J, Borbat PP, Freed JH, Crane BR (2016) Bacterial energy sensor Aer modulates the activity of the chemotaxis kinase CheA based on the redox state of the flavin cofactor. J Biol Chem 291:25809–25814

    Article  CAS  Google Scholar 

  22. Guan ZW, Kamatani D, Kimura S, Iyanagi T (2003) Mechanistic studies on the intramolecular one-electron transfer between the two flavins in the human neuronal nitric-oxide synthase and inducible nitric-oxide synthase flavin domains. J Biol Chem 278:30859–30868

    Article  CAS  Google Scholar 

  23. Curley GP, Carr MC, Mayhew SG, Voordouw G (1991) Redox and flavin-binding properties of recombinant flavodoxin from Desulfovibrio vulgaris (Hildenborough). Eur J Biochem 202:1091–1100

    Article  CAS  Google Scholar 

  24. Zhou ZM, Swenson RP (1995) Electrostatic effects of surface acidic amino acid-residues on the oxidation-reduction potentials of the flavodoxin from Desulfovibrio vulgaris (Hildenborough). Biochemistry 34:3183–3192

    Article  CAS  Google Scholar 

  25. Fantuzzi A, Artali R, Bombieri G, Marchini N, Meneghetti F, Gilardi G, Sadeghi SJ, Cavazzini D, Rossi GL (2009) Redox properties and crystal structures of a Desulfovibrio vulgaris flavodoxin mutant in the monomeric and homodimeric forms. Biochim Biophys Acta 1794:496–505

    Article  CAS  Google Scholar 

  26. Finn RD, Basran J, Roitel O, Wolf CR, Munro AW, Paine MJ, Scrutton NS (2003) Determination of the redox potentials and electron transfer properties of the FAD- and FMN-binding domains of the human oxidoreductase NR1. Eur J Bioch 270:1164–1175

    Article  CAS  Google Scholar 

  27. Brenner S, Hay S, Munro AW, Scrutton NS (2008) Inter-flavin electron transfer in cytochrome P450 reductase—effects of solvent and pH identify hidden complexity in mechanism. FEBS J 275:4540–4557

    Article  CAS  Google Scholar 

  28. Kay CJ, Barber MJ, Notton BA, Solomonson LP (1989) Oxidation reduction midpoint potentials of the flavin, heme and Mo-pterin centers in spinach (Spinacia oleracea L) nitrate reductase. Biochem J 263:285–287

    Article  CAS  Google Scholar 

  29. Tegoni M, Gervais M, Desbois A (1997) Resonance Raman study on the oxidized and anionic semiquinone forms of flavocytochrome b2 and L-lactate monooxygenase. Influence of the structure and environment of the isoalloxazine ring on the flavin function. Biochemistry 36:8932–8946

    Article  CAS  Google Scholar 

  30. Porras AG, Palmer G (1982) The room-temperature potentiometry of xanthine oxidase—pH-dependent redox behavior of the flavin, molybdenum, and iron-sulfur centers. J Biol Chem 257:1617–1626

    Article  Google Scholar 

  31. Ohnishi T, King TE, Salerno JC, Blum H, Bowyer JR, Maida T (1981) Thermodynamic and electron paramagnetic resonance characterization of flavin in succinate dehydrogenase. J Biol Chem 256:5577–5582

    Article  CAS  Google Scholar 

  32. Ravasio S, Curti B, Vanoni MA (2001) Determination of the midpoint potential of the FAD and FMN flavin cofactors and of the 3Fe-4S cluster of glutamate synthase. Biochemistry 40:5533–5541

    Article  CAS  Google Scholar 

  33. Pellett JD, Becker DF, Saenger AK, Fuchs JA, Stankovich MT (2001) Role of substrate/product in Megasphaera elsdenii short-chain acyl-coenzyme A dehydrogenase. Biochemistry 40:7720–7728

    Article  CAS  Google Scholar 

  34. Hirasawa M, Robertson DE, Ameyibor E, Johnson MK, Knaff DB (1992) Oxidation-reduction properties of the ferredoxin-linked glutamate synthase from spinach leaf. Biochim Biophys Acta 1100:105–108

    Article  CAS  Google Scholar 

  35. Paulsen KE, Orville AM, Frerman FE, Lipscomb JD, Stankovich MT (1992) Redox properties of electron-transfer flavoprotein ubiquinone oxidoreductase as determined by EPR-spectroelectrochemistry. Biochemistry 31:11755–11761

    Article  CAS  Google Scholar 

  36. Silaghi-Dumitrescu R, Ng KY, Viswanathan R, Kurtz DM (2005) A flavo-diiron protein from Desulfovibrio vulgaris with oxidase and nitric oxide reductase activities. Evidence for an in vivo nitric oxide scavenging function. Biochemistry 44:3572–3579

    Article  CAS  Google Scholar 

  37. Clark WM (1960) Oxidation-reduction potentials of organic systems. The Williams & Wilkins, Baltimore, MD

    Google Scholar 

  38. Edmondson DE, Tollin G (1971) Flavoprotein chemistry. 1. Circular dichroism studies of flavin chromophore and of relation between redox properties and flavin environment in oxidases and dehydrogenases. Biochemistry 10:113–116

    Article  CAS  Google Scholar 

  39. Dutton P (1978) Redox potentiometry: determination of midpoint potentials of oxidation/reduction components of biological electron-transfer systems. Methods Enzymol 54:411–435

    Article  CAS  Google Scholar 

  40. Massey V, Hemmerich P (1978) Photoreduction of flavoproteins and other biological compounds catalyzed by de-aza flavins. Biochemistry 17:9–16

    Article  CAS  Google Scholar 

  41. Vogt S, Schneider M, Schaefer-Eberwein H, Noell G (2014) Determination of the pH dependent redox potential of glucose oxidase by spectroelectrochemistry. Anal Chem 86:7530–7535

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Bonomi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bonomi, F., Iametti, S. (2021). Redox Titration of Flavoproteins: An Overview. In: Barile, M. (eds) Flavins and Flavoproteins. Methods in Molecular Biology, vol 2280. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-1286-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1286-6_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-0716-1285-9

  • Online ISBN: 978-1-0716-1286-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics