Skip to main content

Overcoming Cellular and Systemic Barriers to Design the Next Wave of Peptide Therapeutics

  • Protocol
  • First Online:
Quantitative Analysis of Cellular Drug Transport, Disposition, and Delivery

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

Peptide drugs cover therapeutic space that is complementary to small molecules and protein therapeutics. Although peptide drugs have been in use for over 50 years, recent advances in understanding the additional target space afforded by peptide drugs, as well as technical achievements in peptide synthesis and screening have reinvigorated interest in peptide drugs as an addition to our therapeutic tool chest. Indeed, novel combinatorial strategies enable de novo generation of potent ligands to specific targets capable of inhibiting protein–protein interactions. Conversion of these ligands into drugs is challenging, requiring optimization of membrane permeability and intracellular exposure, and pharmacokinetic properties while maintaining prescribed pharmacological activities. This chapter provides an overview of the diversity of peptide drugs emerging as novel therapeutics, and challenges to achieving cellular and in vivo exposure required to support pharmacological efficacy. Summarizing the challenges from early discovery through to clinical translation, a hierarchal strategy is presented for peptide discovery in which structural diversity in early discovery stages are used to inform opportunities leading to clinical candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sanger F, Thompson EO (1952) The amino-acid sequence in the glycyl chain of insulin. Biochem J 52(1):iii

    CAS  PubMed  Google Scholar 

  2. Sanger F, Thompson EO (1953) The amino-acid sequence in the glycyl chain of insulin. I. The identification of lower peptides from partial hydrolysates. Biochem J 53(3):353–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sanger F, Thompson EO (1953) The amino-acid sequence in the glycyl chain of insulin. II. The investigation of peptides from enzymic hydrolysates. Biochem J 53(3):366–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sanger F, Smith LF, Kitai R (1954) The disulphide bridges of insulin. Biochem J 58(330th Meeting):vi–vii

    CAS  PubMed  Google Scholar 

  5. Moroder L, Musiol HJ (2017) Insulin-from its discovery to the industrial synthesis of modern insulin analogues. Angew Chem Int Ed Engl 56(36):10656–10669

    Article  CAS  PubMed  Google Scholar 

  6. Quianzon CC, Cheikh I (2012) History of insulin. J Community Hosp Intern Med Perspect 2(2)

    Google Scholar 

  7. Gradel AKJ et al (2018) Factors affecting the absorption of subcutaneously administered insulin: effect on variability. J Diabetes Res 2018:1205121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rege NK, Phillips NFB, Weiss MA (2017) Development of glucose-responsive 'smart' insulin systems. Curr Opin Endocrinol Diabetes Obes 24(4):267–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bauer W et al (1982) SMS 201-995: a very potent and selective octapeptide analogue of somatostatin with prolonged action. Life Sci 31(11):1133–1140

    Article  CAS  PubMed  Google Scholar 

  10. Rüegger A et al (1976) Cyclosporin A, a peptide metabolite from Trichoderma polysporum (link ex Pers.) Rifai, with a remarkable immunosuppressive activity. Helv Chim Acta 59(4):1075–1092

    Article  PubMed  Google Scholar 

  11. Hilgenfeld R et al (2014) The evolution of insulin glargine and its continuing contribution to diabetes care. Drugs 74(8):911–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lau J et al (2015) Discovery of the once-weekly glucagon-like peptide-1 (GLP-1) analogue semaglutide. J Med Chem 58(18):7370–7380

    Article  CAS  PubMed  Google Scholar 

  13. Ikai K et al (1991) Structure of aureobasidin A. J Antibiot (Tokyo) 44(9):925–933

    Article  CAS  Google Scholar 

  14. Nagarajan R (1993) Structure-activity relationships of vancomycin-type glycopeptide antibiotics. J Antibiot (Tokyo) 46(8):1181–1195

    Article  CAS  Google Scholar 

  15. Debono M et al (1988) Enzymatic and chemical modifications of lipopeptide antibiotic A21978C: the synthesis and evaluation of daptomycin (LY146032). J Antibiot (Tokyo) 41(8):1093–1105

    Article  CAS  Google Scholar 

  16. Shigematsu N et al (1994) FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum No. 968. II. Structure determination. J Antibiot (Tokyo) 47(3):311–314

    Article  CAS  Google Scholar 

  17. Sakamoto K et al (2017) K-Ras(G12D)-selective inhibitory peptides generated by random peptide T7 phage display technology. Biochem Biophys Res Commun 484(3):605–611

    Article  CAS  PubMed  Google Scholar 

  18. Rhodes CA et al (2018) Cell-permeable bicyclic peptidyl inhibitors against NEMO-IκB kinase interaction directly from a combinatorial library. J Am Chem Soc 140(38):12102–12110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Seigal BA et al (2015) The discovery of macrocyclic XIAP antagonists from a DNA-programmed chemistry library, and their optimization to give Lead compounds with in vivo antitumor activity. J Med Chem 58(6):2855–2861

    Article  CAS  PubMed  Google Scholar 

  20. Sharma S et al (2019) Current mechanistic and pharmacodynamic understanding of melanocortin-4 receptor activation. Molecules 24(10):1892

    Article  CAS  PubMed Central  Google Scholar 

  21. Hruby VJ et al (1995) Cyclic lactam alpha-melanotropin analogues of Ac-Nle4-cyclo[Asp5, D-Phe7,Lys10] alpha-melanocyte-stimulating hormone-(4-10)-NH2 with bulky aromatic amino acids at position 7 show high antagonist potency and selectivity at specific melanocortin receptors. J Med Chem 38(18):3454–3461

    Article  CAS  PubMed  Google Scholar 

  22. Al-Obeidi F et al (1989) Potent and prolonged acting cyclic lactam analogues of alpha-melanotropin: design based on molecular dynamics. J Med Chem 32(12):2555–2561

    Article  CAS  PubMed  Google Scholar 

  23. Sawyer TK et al (1980) 4-Norleucine, 7-D-phenylalanine-alpha-melanocyte-stimulating hormone: a highly potent alpha-melanotropin with ultralong biological activity. Proc Natl Acad Sci U S A 77(10):5754–5758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kannan S et al (2020) Macrocyclization of an all-d linear α-helical peptide imparts cellular permeability. Chem Sci 11(21):5577–5591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stahelin HF (1996) The history of cyclosporin A (Sandimmune) revisited: another point of view. Experientia 52(1):5–13

    Article  CAS  PubMed  Google Scholar 

  26. Tribe HT (1998) The discovery and development of cyclosporin. Mycologist 12(1):20–22

    Article  Google Scholar 

  27. Borel JF, Kis ZL (1991) The discovery and development of cyclosporine (Sandimmune). Transplant Proc 23(2):1867–1874

    CAS  PubMed  Google Scholar 

  28. Josephson K, Ricardo A, Szostak JW (2014) mRNA display: from basic principles to macrocycle drug discovery. Drug Discov Today 19(4):388–399

    Article  CAS  PubMed  Google Scholar 

  29. Liu R et al (2017) Tumor-targeting peptides from combinatorial libraries. Adv Drug Deliv Rev 110-111:13–37

    Article  CAS  PubMed  Google Scholar 

  30. Bashiruddin NK, Suga H (2015) Construction and screening of vast libraries of natural product-like macrocyclic peptides using in vitro display technologies. Curr Opin Chem Biol 24:131–138

    Article  CAS  PubMed  Google Scholar 

  31. Belyanskaya SL et al (2017) Discovering drugs with DNA-encoded library technology: from concept to clinic with an inhibitor of soluble epoxide hydrolase. Chembiochem 18(9):837–842

    Article  CAS  PubMed  Google Scholar 

  32. Zhu Z et al (2018) Design and application of a DNA-encoded macrocyclic peptide library. ACS Chem Biol 13(1):53–59

    Article  CAS  PubMed  Google Scholar 

  33. Nixon AE, Sexton DJ, Ladner RC (2014) Drugs derived from phage display: from candidate identification to clinical practice. MAbs 6(1):73–85

    Article  PubMed  Google Scholar 

  34. Lam KS et al (1991) A new type of synthetic peptide library for identifying ligand-binding activity. Nature 354(6348):82–84

    Article  CAS  PubMed  Google Scholar 

  35. Lyamichev VI et al (2017) Stepwise evolution improves identification of diverse peptides binding to a protein target. Sci Rep 7(1):12116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Li J et al (2018) Microfluidic print-to-synthesis platform for efficient preparation and screening of combinatorial peptide microarrays. Anal Chem 90(9):5833–5840

    Article  CAS  PubMed  Google Scholar 

  37. Li J et al (2019) Combinatorial peptide microarray synthesis based on microfluidic impact printing. ACS Comb Sci 21(1):6–10

    Article  CAS  PubMed  Google Scholar 

  38. Lipinski CA et al (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46(1-3):3–26

    Article  CAS  PubMed  Google Scholar 

  39. Naylor MR et al (2017) Cyclic peptide natural products chart the frontier of oral bioavailability in the pursuit of undruggable targets. Curr Opin Chem Biol 38:141–147

    Article  CAS  PubMed  Google Scholar 

  40. Lautz J et al (1987) Molecular dynamics simulations of cyclosporin A: the crystal structure and dynamic modelling of a structure in apolar solution based on NMR data. J Comput Aided Mol Des 1(3):219–241

    Article  CAS  PubMed  Google Scholar 

  41. Lautz J et al (1989) Calculating three-dimensional molecular structure from atom-atom distance information: cyclosporin A. Int J Pept Protein Res 33(4):281–288

    Article  CAS  PubMed  Google Scholar 

  42. Mikol V et al (1993) X-ray structure of a monomeric cyclophilin A-cyclosporin A crystal complex at 2.1 a resolution. J Mol Biol 234(4):1119–1130

    Article  CAS  PubMed  Google Scholar 

  43. Mikol V et al (1998) Conformational differences of an immunosuppressant peptolide in a single crystal and in a crystal complex with human cyclophilin A. J Mol Biol 283(2):451–461

    Article  CAS  PubMed  Google Scholar 

  44. Wang CK et al (2018) Conformational flexibility is a determinant of permeability for Cyclosporin. J Phys Chem B 122(8):2261–2276

    Article  CAS  PubMed  Google Scholar 

  45. Pye CR et al (2017) Nonclassical size dependence of permeation defines bounds for passive adsorption of large drug molecules. J Med Chem 60(5):1665–1672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rezai T et al (2006) Conformational flexibility, internal hydrogen bonding, and passive membrane permeability: successful in silico prediction of the relative permeabilities of cyclic peptides. J Am Chem Soc 128(43):14073–14080

    Article  CAS  PubMed  Google Scholar 

  47. Nielsen DS et al (2017) Orally absorbed cyclic peptides. Chem Rev 117(12):8094–8128

    Article  CAS  PubMed  Google Scholar 

  48. Frankel AD, Pabo CO (1988) Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55(6):1189–1193

    Article  CAS  PubMed  Google Scholar 

  49. Green M, Loewenstein PM (1988) Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell 55(6):1179–1188

    Article  CAS  PubMed  Google Scholar 

  50. Fawell S et al (1994) Tat-mediated delivery of heterologous proteins into cells. Proc Natl Acad Sci U S A 91(2):664–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Derossi D et al (1994) The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem 269(14):10444–10450

    Article  CAS  PubMed  Google Scholar 

  52. Joliot A et al (1991) Antennapedia homeobox peptide regulates neural morphogenesis. Proc Natl Acad Sci U S A 88(5):1864–1868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schutze-Redelmeier MP et al (1996) Introduction of exogenous antigens into the MHC class I processing and presentation pathway by Drosophila antennapedia homeodomain primes cytotoxic T cells in vivo. J Immunol 157(2):650–655

    CAS  PubMed  Google Scholar 

  54. Habault J, Poyet JL (2019) Recent advances in cell penetrating peptide-based anticancer therapies. Molecules 24(5):927

    Article  PubMed Central  CAS  Google Scholar 

  55. Martin I, Teixido M, Giralt E (2011) Design, synthesis and characterization of a new anionic cell-penetrating peptide: SAP(E). Chembiochem 12(6):896–903

    Article  CAS  PubMed  Google Scholar 

  56. Wimley WC, Hristova K (2011) Antimicrobial peptides: successes, challenges and unanswered questions. J Membr Biol 239(1-2):27–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Marks JR et al (2011) Spontaneous membrane-translocating peptides by orthogonal high-throughput screening. J Am Chem Soc 133(23):8995–9004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Libardo MDJ et al (2017) How does membrane oxidation affect cell delivery and cell killing? Trends Biotechnol 35(8):686–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang TY et al (2017) Membrane oxidation in cell delivery and cell killing applications. ACS Chem Biol 12(5):1170–1182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Herce HD, Garcia AE, Cardoso MC (2014) Fundamental molecular mechanism for the cellular uptake of guanidinium-rich molecules. J Am Chem Soc 136(50):17459–17467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fuselier T, Wimley WC (2017) Spontaneous membrane translocating peptides: the role of leucine-arginine consensus motifs. Biophys J 113(4):835–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Carney RP et al (2017) Combinatorial library screening with liposomes for discovery of membrane active peptides. ACS Comb Sci 19(5):299–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Qian Z et al (2014) Early endosomal escape of a cyclic cell-penetrating peptide allows effective cytosolic cargo delivery. Biochemistry 53(24):4034–4046

    Article  CAS  PubMed  Google Scholar 

  64. Trinh TB et al (2016) Discovery of a direct Ras inhibitor by screening a combinatorial library of cell-permeable bicyclic peptides. ACS Comb Sci 18(1):75–85

    Article  CAS  PubMed  Google Scholar 

  65. Upadhyaya P et al (2015) Inhibition of Ras signaling by blocking Ras-effector interactions with cyclic peptides. Angew Chem Int Ed Engl 54(26):7602–7606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bhosle SM et al (2018) Unifying in vitro and in vivo IVT mRNA expression discrepancies in skeletal muscle via mechanotransduction. Biomaterials 159:189–203

    Article  CAS  PubMed  Google Scholar 

  67. Paunovska K et al (2018) A direct comparison of in vitro and in vivo nucleic acid delivery mediated by hundreds of nanoparticles reveals a weak correlation. Nano Lett 18(3):2148–2157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Aguilera TA et al (2009) Systemic in vivo distribution of activatable cell penetrating peptides is superior to that of cell penetrating peptides. Integr Biol (Camb) 1(5-6):371–381

    Article  CAS  PubMed Central  Google Scholar 

  69. Jiang T et al (2004) Tumor imaging by means of proteolytic activation of cell-penetrating peptides. Proc Natl Acad Sci U S A 101(51):17867–17872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chang YS et al (2013) Stapled α-helical peptide drug development: a potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy. Proc Natl Acad Sci U S A 110(36):E3445–E3454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Fairlie DP et al (2000) Conformational selection of inhibitors and substrates by proteolytic enzymes: implications for drug design and polypeptide processing. J Med Chem 43(7):1271–1281

    Article  CAS  PubMed  Google Scholar 

  72. Howell SM et al (2014) Serum stable natural peptides designed by mRNA display. Sci Rep 4:6008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Di L (2015) Strategic approaches to optimizing peptide ADME properties. AAPS J 17(1):134–143

    Article  CAS  PubMed  Google Scholar 

  74. Bird GH et al (2010) Hydrocarbon double-stapling remedies the proteolytic instability of a lengthy peptide therapeutic. Proc Natl Acad Sci U S A 107(32):14093–14098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Cromm PM et al (2016) Protease-resistant and cell-permeable double-stapled peptides targeting the Rab8a GTPase. ACS Chem Biol 11(8):2375–2382

    Article  CAS  PubMed  Google Scholar 

  76. Lennernas H (2007) Intestinal permeability and its relevance for absorption and elimination. Xenobiotica 37(10-11):1015–1051

    Article  CAS  PubMed  Google Scholar 

  77. Rubio-Aliaga I, Daniel H (2008) Peptide transporters and their roles in physiological processes and drug disposition. Xenobiotica 38(7-8):1022–1042

    Article  CAS  PubMed  Google Scholar 

  78. Boll M et al (1994) Expression cloning of a cDNA from rabbit small intestine related to proton-coupled transport of peptides, beta-lactam antibiotics and ACE-inhibitors. Pflugers Arch 429(1):146–149

    Article  CAS  PubMed  Google Scholar 

  79. Boehm M et al (2017) Discovery of potent and orally bioavailable macrocyclic peptide-peptoid hybrid CXCR7 modulators. J Med Chem 60(23):9653–9663

    Article  CAS  PubMed  Google Scholar 

  80. Lemmer HJ, Hamman JH (2013) Paracellular drug absorption enhancement through tight junction modulation. Expert Opin Drug Deliv 10(1):103–114

    Article  CAS  PubMed  Google Scholar 

  81. Anselmo AC, Gokarn Y, Mitragotri S (2019) Non-invasive delivery strategies for biologics. Nat Rev Drug Discov 18(1):19–40

    Article  CAS  PubMed  Google Scholar 

  82. Maher S, Mrsny RJ, Brayden DJ (2016) Intestinal permeation enhancers for oral peptide delivery. Adv Drug Deliv Rev 106(Pt B):277–319

    Article  CAS  PubMed  Google Scholar 

  83. Buckley ST et al (2018) Transcellular stomach absorption of a derivatized glucagon-like peptide-1 receptor agonist. Sci Transl Med 10(467):eaar7047

    Article  PubMed  CAS  Google Scholar 

  84. Davies M et al (2017) Effect of oral semaglutide compared with placebo and subcutaneous semaglutide on glycemic control in patients with type 2 diabetes: a randomized clinical trial. JAMA 318(15):1460–1470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Granhall C et al (2018) Pharmacokinetics, safety and tolerability of oral semaglutide in subjects with renal impairment. Clin Pharmacokinet 57(12):1571–1580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Søeborg T et al (2009) Absorption kinetics of insulin after subcutaneous administration. Eur J Pharm Sci 36(1):78–90

    Article  PubMed  CAS  Google Scholar 

  87. Periti P, Mazzei T, Mini E (2002) Clinical pharmacokinetics of depot leuprorelin. Clin Pharmacokinet 41(7):485–504

    Article  CAS  PubMed  Google Scholar 

  88. Jadhav PR et al (2006) Semi-mechanistic pharmacodynamic modeling for degarelix, a novel gonadotropin releasing hormone (GnRH) blocker. J Pharmacokinet Pharmacodyn 33(5):609–634

    Article  CAS  PubMed  Google Scholar 

  89. Nagaraja NV et al (2000) Pharmacokinetic and pharmacodynamic modeling of cetrorelix, an LH-RH antagonist, after subcutaneous administration in healthy premenopausal women. Clin Pharmacol Ther 68(6):617–625

    Article  CAS  PubMed  Google Scholar 

  90. Freeman DJ (1991) Pharmacology and pharmacokinetics of cyclosporine. Clin Biochem 24(1):9–14

    Article  CAS  PubMed  Google Scholar 

  91. Chanson P, Timsit J, Harris AG (1993) Clinical pharmacokinetics of octreotide. Therapeutic applications in patients with pituitary tumours. Clin Pharmacokinet 25(5):375–391

    Article  CAS  PubMed  Google Scholar 

  92. Yamada T et al (1997) Carrier-mediated hepatic uptake of the cationic cyclopeptide, octreotide, in rats. Comparison between in vivo and in vitro. Drug Metab Dispos 25(5):536–543

    CAS  PubMed  Google Scholar 

  93. Puente XS et al (2003) Human and mouse proteases: a comparative genomic approach. Nat Rev Genet 4(7):544–558

    Article  CAS  PubMed  Google Scholar 

  94. Ptachcinski RJ, Venkataramanan R, Burckart GJ (1986) Clinical pharmacokinetics of cyclosporin. Clin Pharmacokinet 11(2):107–132

    Article  CAS  PubMed  Google Scholar 

  95. Riviere LR, Tempst P (2001) Enzymatic digestion of proteins in solution. Curr Protoc Protein Sci Chapter 11:Unit 11.1

    CAS  PubMed  Google Scholar 

  96. Authier F et al (2003) Endosomal proteolysis of glucagon at neutral pH generates the bioactive degradation product miniglucagon-(19-29). Endocrinology 144(12):5353–5364

    Article  CAS  PubMed  Google Scholar 

  97. Authier F et al (2002) Endosomal proteolysis of internalized insulin at the C-terminal region of the B chain by cathepsin D. J Biol Chem 277(11):9437–9446

    Article  CAS  PubMed  Google Scholar 

  98. Fischer V et al (1998) The multidrug resistance modulator valspodar (PSC 833) is metabolized by human cytochrome P450 3A. Implications for drug-drug interactions and pharmacological activity of the main metabolite. Drug Metab Dispos 26(8):802–811

    CAS  PubMed  Google Scholar 

  99. Ivanova L, Faeste CK, Uhlig S (2011) In vitro phase I metabolism of the depsipeptide enniatin B. Anal Bioanal Chem 400(9):2889–2901

    Article  CAS  PubMed  Google Scholar 

  100. Yamada T et al (1996) Mechanism of the tissue distribution and biliary excretion of the cyclic peptide octreotide. J Pharmacol Exp Ther 279(3):1357–1364

    CAS  PubMed  Google Scholar 

  101. Akhteruzzaman S et al (1999) Carrier-mediated hepatic uptake of peptidic endothelin antagonists in rats. J Pharmacol Exp Ther 290(3):1107–1115

    CAS  PubMed  Google Scholar 

  102. Drucker DJ, Dritselis A, Kirkpatrick P (2010) Liraglutide. Nat Rev Drug Discov 9(4):267–268

    Article  CAS  PubMed  Google Scholar 

  103. Glaesner W et al (2010) Engineering and characterization of the long-acting glucagon-like peptide-1 analogue LY2189265, an Fc fusion protein. Diabetes Metab Res Rev 26(4):287–296

    Article  CAS  PubMed  Google Scholar 

  104. Tang L et al (2004) Pharmacokinetic aspects of biotechnology products. J Pharm Sci 93(9):2184–2204

    Article  CAS  PubMed  Google Scholar 

  105. Carone FA, Peterson DR, Flouret G (1982) Renal tubular processing of small peptide hormones. J Lab Clin Med 100(1):1–14

    CAS  PubMed  Google Scholar 

  106. Fiacco SV et al (2016) Directed evolution of scanning unnatural-protease-resistant (SUPR) peptides for in vivo applications. Chembiochem 17(17):1643–1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kino K et al (1996) Aureobasidin A, an antifungal cyclic depsipeptide antibiotic, is a substrate for both human MDR1 and MDR2/P-glycoproteins. FEBS Lett 399(1-2):29–32

    Article  CAS  PubMed  Google Scholar 

  108. Olson ES et al (2009) In vivo characterization of activatable cell penetrating peptides for targeting protease activity in cancer. Integr Biol (Camb) 1(5-6):382–393

    Article  CAS  PubMed Central  Google Scholar 

  109. van Duijnhoven SM et al (2011) Tumor targeting of MMP-2/9 activatable cell-penetrating imaging probes is caused by tumor-independent activation. J Nucl Med 52(2):279–286

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hochman, J., Sawyer, T., Duggal, R. (2021). Overcoming Cellular and Systemic Barriers to Design the Next Wave of Peptide Therapeutics. In: Rosania, G.R., Thurber, G.M. (eds) Quantitative Analysis of Cellular Drug Transport, Disposition, and Delivery. Methods in Pharmacology and Toxicology. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1250-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1250-7_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1249-1

  • Online ISBN: 978-1-0716-1250-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics