Skip to main content
Log in

Molecular dynamics simulations of cyclosporin A: The crystal structure and dynamic modelling of a structure in apolar solution based on NMR data

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

The conformation of the immunosuppressive drug cyclosporin A (CPA), both in apolar solution and in crystalline state, has been studied by computer simulation techniques. Three molecular dynamics (MD) simulations have been performed: one modelling the crystal structure and two modelling the structure in apolar solution, using a restrained MD approach in which data from nuclear magnetic resonance (NMR) and infrared (IR) spectroscopy are taken into account. The simulation of the crystalline state (MDC) concerns a system of 4 unit cells containing 16 cyclosporin A molecules and 22 water molecules, which is simulated using crystalline periodic boundary conditions. The simulations modelling the apolar solvent conformation (MDS) concern one isolated cyclosporin A molecule. In these simulations an extra term in the interatomic potential function is used, which forces the molecule to satisfy a set of 57 atom-atom distance constraints originating from nuclear Overhauser effects (NOEs) obtained from NMR spectroscopy and one distance constraint deduced from IR spectroscopy.

From a comparison of the results of the crystal simulation to those of the X-ray experiment in terms of structure, atomic fluctuations, hydrogen bond pattern, etc., it is concluded that the force field that is used yields an adequate representation of crystalline cyclosporin A. Secondly, it is shown that the dynamic modelling technique that is used to obtain a structure in a polar solution from NMR distance information works well. Starting from initial conformations which have a root mean square difference of 0.14 nm both distance restrained MD simulations converge to the same final solution structure. A comparison of the crystal structure of cyclosporin A and the one in apolar solution shows that there are significant differences. The overall difference in atomic positions is 0.09 nm for the Cx atoms and 0.17 nm for all atoms. In apolar solution, the molecule is slightly more bent and the side chains of 1 MeBmt and 10 MeLeu adopt a different conformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MeBmt:

(4R)-4[(E)-2-butenyl]-4-methyl-l-Threonine

MD:

Molecular dynamics

EM:

Energy minimization

MDC:

Molecular dynamics simulation of the crystal

MDS1:

Restrained molecular dynamics simulation to obtain the structure in solution starting from the crystal structure

MDS2:

Like MDS1, but starting from the SMS structure

SMS:

Proposed structure in solution, obtained by model building

XRAY:

An X-ray structure

CPA:

Cyclosporin A

NMR:

Nuclear magnetic resonance spectroscopy

NOE :

Nuclear Overhauser enhancement

MDS1 :

Mean simulated structure obtained by averaging over the time period 20–40 ps of the MDS1 simulation

MDS2:

Mean simulated structure obtained by averaging over the time period 10–30 ps of the MDS2 simulation

<MDC>:

Mean simulated structure obtained by averaging over the time period 7–15 ps and over the 16 asymmetric units in the computational box of the MDC simulation.

References

  1. Vida, J.A. and Gordon, M. (Eds.) Conformationally directed Drug Design, ACS Symposium Series251, American Chemical Society, Washington, D.C., 1984.

    Google Scholar 

  2. Kessler, H., Angew. Chem. Int. Ed. Engl., 21 (1982) 512–523.

    Google Scholar 

  3. Matthews, B.W., Ann. Rev. Phys. Chem., 27 (1976) 493–523.

    Google Scholar 

  4. Kessler, H., Zimmerman, G., Förster, H., Engel, J., Oepen, G. and Sheldrick, W. S., Angew. Chem. Int. Ed. Engl., 20 (1981) 1053–1055.

    Google Scholar 

  5. Aue, W.P., Bartholdi, E. and Ernst, R.R., J. Chem. Phys., 64 (1976) 2229–2246.

    Google Scholar 

  6. Billeter, M., Braun, W. and Wüthrich, K., J. Mol. Biol., 155 (1982) 321–346.

    Google Scholar 

  7. Wagner, G. and Wüthrich, K.: J. Mol. Biol., 155 (1982) 347–366.

    Google Scholar 

  8. Wider, G., Lee, K. and Wüthrich, K., J. Mol. Biol., 155 (1982) 367–388.

    Google Scholar 

  9. Arseniev, A.S., Wider, G., Joubert, F.J. and Wuthrich, K., J. Mol. Biol., 159 (1982) 323–351.

    Google Scholar 

  10. van Gunsteren, W.F., Kaptein, R. and Zuiderweg, E.R.P., In Olson, W.K. (Ed.) Proceedings of the NATO/CECAM Workshop on Nucleic Acid Conformation and Dynamics, Orsay, 1984, pp 79–92

  11. Kaptein, R., Zuiderweg, E.R.P., Scheek, R.M., Boelens, R. and van Gunsteren W.F., J. Mol. Biol., 182 (1985) 179–182.

    Google Scholar 

  12. Clore, G.M., Gronenborn, A.M., Brünger, A.T. and Karplus, M., J. Mol. Biol., 186 (1985) 435–455.

    Google Scholar 

  13. Ruegger, A., Kuhn, M., Lichti, H., Loosli, H.R., Huguenin, R., Quiquirez, C. and von Warburg, A., Helv. Chim. Acta. 59 (1976) 1075–1092.

    Google Scholar 

  14. Traber, R., Kuhn, M., Loosli, H.R., Lichti, H. and von Wartburg, A., Helv. Chim. Acta, 60 (1977) 1247–1255.

    Google Scholar 

  15. Traber, R., Kuhn, M., Lichti, H. and von Wartburg, A., Helv. Chim. Acta, 60 (1977) 1568–1578

    Google Scholar 

  16. Wenger, R.M., Payne, T.G., and Schreier, M.H., Progress in Clinical Biochemistry and Medicine, Vol. 3, Springer Verlag, Berlin, 1986, pp. 157–191.

    Google Scholar 

  17. Wenger, R.M., Progress in Allergy, Vol. 38, Karger Medical and Scientific Publishers, Basel, 1986, pp. 46–64.

    Google Scholar 

  18. Loosli, H.R., Kessler, H., Oschkinat, H., Weber, H.P., Petcher, T.J. and Widmer, A., Helv. Chim. Acta, 60 (1985) 682–704.

    Google Scholar 

  19. Kessler, H., Loosli, H.R., Oschkinat, H., Helv. Chim. Acta 60 (1985) 661–681.

    Google Scholar 

  20. van Gunsteren, W.F., Boelens, R., Kaptein, R., Scheek, R.M., Zuiderweg, E.R.P., In Hermans, J. (Ed.) Molecular Dynamics and Protein Structure, Polycrystal Book Service, P.O. Box 27, Western Springs, IL 60558, 1985, pp. 92–99.

    Google Scholar 

  21. Rose, G.D., Gierasch, L.M., and Smith, J.A., Adv. Protein Chem., 37 (1984) 1–109.

    Google Scholar 

  22. Chou, K.C., Pottle, M., Nemethy, G., Keda, Y. and Scheraga, H.A., J. Mol. Biol., 162 (1982) 89–112.

    Google Scholar 

  23. Hermans, J., Berendsen, H.J.C., van Gunsteren, W.F. and Postma, J.P.M., Biopolymers, 23 (1984) 1513–1518.

    Google Scholar 

  24. van Gunsteren W.F. and Karplus, M., Macromolecules, 15 (1982) 1528–1544.

    Google Scholar 

  25. Ryckaert, J.-P., Ciccotti, G. and Berendsen, H.J.C., J. Comput. Phys., 23 (1977) 327–341.

    Google Scholar 

  26. van Gunsteren, W.F. and Berendsen, H.J.C., Mol. Phys., 34 (1977) 1311–1327.

    Google Scholar 

  27. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F. and Hermans, J., In Pullman, B. (Ed.) Intermolecular Forces. Reidel, 1981, pp. 331–342.

  28. Wuthrich, K., Billeter, M. and Braum, W., J. Mol. Biol., 169 (1983) 949–961.

    Google Scholar 

  29. Hockney, R.W. and Eastwood, J.W., Computer Simulation Using Particles, McGraw-Hill, New York, 1981.

    Google Scholar 

  30. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A. and Haak, J.R., J. Chem. Phys., 81 (1984) 3684–3690.

    Google Scholar 

  31. Jolad, S.D., Hoffmann, J.J., Torrance, S.J., Wiedhopf, R.M., Cole, J.R., Arora, S.K., Bates, R.B., Gargiulo, R.L. and Krieg, G.R., J. Am. Chem. Soc., 99 (1977) 8040–8044.

    Google Scholar 

  32. Toniolo, C., CRC Crit. Rev. Biochem., 9 (1980) 2–44.

    Google Scholar 

  33. Braun, W., Bosch, C., Brown, L.R., Go, N. and Wuthrich, K., Biochim. Biophys. Acta, 66 (1981) 377–396.

    Google Scholar 

  34. Kuriyan, J., Petsko, G.A., Levy, R.M. and Karplus, M., J. Mol. Biol., 190 (1986) 227–254.

    Google Scholar 

  35. Khaled, M.A. and Watkins, C.L., J. Am. Chem. Soc., 105 (1983) 3363–3365.

    Google Scholar 

  36. Lipari, G. and Szabo, A., J. Am. Chem. Soc., 104 (1982) 4546–4559.

    Google Scholar 

  37. Lipari, G. and Szabo, A., J. Am. Chem. Soc., 104 (1982) 4559–4570.

    Google Scholar 

  38. Lipari, G., Szabo, A. and Levy, R.M., Nature, 300 (1982) 197–198.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lautz, J., Kessler, H., Kaptein, R. et al. Molecular dynamics simulations of cyclosporin A: The crystal structure and dynamic modelling of a structure in apolar solution based on NMR data. J Computer-Aided Mol Des 1, 219–241 (1987). https://doi.org/10.1007/BF01677046

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01677046

Key words

Navigation