Skip to main content
Log in

Monitoring Melanoma Using Circulating Free DNA

  • Leading Article
  • Published:
American Journal of Clinical Dermatology Aims and scope Submit manuscript

Abstract

Genetic material derived from tumours is constantly shed into the circulation of cancer patients both in the form of circulating free nucleic acids and within circulating cells or extracellular vesicles. Monitoring cancer-specific genomic alterations, particularly mutant allele frequencies, in circulating nucleic acids allows for a non-invasive liquid biopsy for detecting residual disease and response to therapy. The advent of molecular targeted treatments and immunotherapies with increasing effectiveness requires corresponding effective molecular biology methods for the detection of biomarkers such as circulating nucleic acid to monitor and ultimately personalise therapy. The use of polymerase chain reaction (PCR)-based methods, such as droplet digital PCR, allows for a very sensitive analysis of circulating tumour DNA, but typically only a limited number of gene mutations can be detected in parallel. In contrast, next-generation sequencing allows for parallel analysis of multiple mutations in many genes. The development of targeted next-generation sequencing cancer gene panels optimised for the detection of circulating free DNA now provides both the flexibility of multiple mutation analysis coupled with a sensitivity that approaches or even matches droplet digital PCR. In this review, we discuss the advantages and disadvantages of these current molecular technologies in conjunction with how this field is evolving in the context of melanoma diagnosis, prognosis, and monitoring of response to therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Siravegna G, Marsoni S, Siena S, Bardelli A. Integrating liquid biopsies into the management of cancer. Nat Rev Clin Oncol. 2017;14(9):531–48.

    Article  CAS  PubMed  Google Scholar 

  2. Perakis S, Speicher MR. Emerging concepts in liquid biopsies. BMC Med. 2017;15(1):75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Thompson JR, Menon SP. Liquid biopsies and cancer immunotherapy. Cancer J. 2018;24(2):78–83.

    Article  CAS  PubMed  Google Scholar 

  4. Gaiser MR, von Bubnoff N, Gebhardt C, Utikal JS. Liquid biopsy to monitor melanoma patients. J Dtsch Dermatol Ges. 2018;16(4):405–14.

    PubMed  Google Scholar 

  5. Lim SY, Lee JH, Diefenbach RJ, Kefford RF, Rizos H. Liquid biomarkers in melanoma: detection and discovery. Mol Cancer. 2018;17(1):8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cheung AH, Chow C, To KF. Latest development of liquid biopsy. J Thorac Dis. 2018;10(Suppl 14):S1645–51.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sumbal S, Javed A, Afroze B, Zulfiqar HF, Javed F, Noreen S, et al. Circulating tumor DNA in blood: future genomic biomarkers for cancer detection. Exp Hematol. 2018;65:17–28.

    Article  CAS  PubMed  Google Scholar 

  8. Pos O, Biro O, Szemes T, Nagy B. Circulating cell-free nucleic acids: characteristics and applications. Eur J Hum Genet. 2018;26(7):937–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lu L, Bi J, Bao L. Genetic profiling of cancer with circulating tumor DNA analysis. J Genet Genomics. 2018;45(2):79–85.

    Article  PubMed  Google Scholar 

  10. Calapre L, Warburton L, Millward M, Ziman M, Gray ES. Circulating tumour DNA (ctDNA) as a liquid biopsy for melanoma. Cancer Lett. 2017;28(404):62–9.

    Article  CAS  Google Scholar 

  11. Marzese DM, Hirose H, Hoon DS. Diagnostic and prognostic value of circulating tumor-related DNA in cancer patients. Expert Rev Mol Diagn. 2013;13(8):827–44.

    Article  CAS  PubMed  Google Scholar 

  12. Underhill HR, Kitzman JO, Hellwig S, Welker NC, Daza R, Baker DN, et al. Fragment length of circulating tumor DNA. PLoS Genet. 2016;12(7):e1006162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Thierry AR, Mouliere F, Gongora C, Ollier J, Robert B, Ychou M, et al. Origin and quantification of circulating DNA in mice with human colorectal cancer xenografts. Nucleic Acids Res. 2010;38(18):6159–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lo YM, Chan KC, Sun H, Chen EZ, Jiang P, Lun FM, et al. Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus. Sci Transl Med. 2010;2(61):61ra91.

    Article  CAS  PubMed  Google Scholar 

  15. Thierry AR, El Messaoudi S, Gahan PB, Anker P, Stroun M. Origins, structures, and functions of circulating DNA in oncology. Cancer Metastasis Rev. 2016;35(3):347–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jahr S, Hentze H, Englisch S, Hardt D, Fackelmayer FO, Hesch RD, et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res. 2001;61(4):1659–65.

    CAS  PubMed  Google Scholar 

  17. Stroun M, Lyautey J, Lederrey C, Olson-Sand A, Anker P. About the possible origin and mechanism of circulating DNA apoptosis and active DNA release. Clin Chim Acta. 2001;313(1–2):139–42.

    Article  CAS  PubMed  Google Scholar 

  18. Donaldson J, Park BH. Circulating tumor DNA: measurement and clinical utility. Annu Rev Med. 2018;29(69):223–34.

    Article  CAS  Google Scholar 

  19. Wan JCM, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C, et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer. 2017;17(4):223–38.

    Article  CAS  PubMed  Google Scholar 

  20. Oellerich M, Schutz E, Beck J, Kanzow P, Plowman PN, Weiss GJ, et al. Using circulating cell-free DNA to monitor personalized cancer therapy. Crit Rev Clin Lab Sci. 2017;54(3):205–18.

    Article  CAS  PubMed  Google Scholar 

  21. Cabel L, Riva F, Servois V, Livartowski A, Daniel C, Rampanou A, et al. Circulating tumor DNA changes for early monitoring of anti-PD1 immunotherapy: a proof-of-concept study. Ann Oncol. 2017;28(8):1996–2001.

    Article  CAS  PubMed  Google Scholar 

  22. Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, Li M, et al. Circulating mutant DNA to assess tumor dynamics. Nat Med. 2008;14(9):985–90.

    Article  CAS  PubMed  Google Scholar 

  23. Heitzer E, Perakis S, Geigl JB, Speicher MR. The potential of liquid biopsies for the early detection of cancer. NPJ Precis Oncol. 2017;1(1):36.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Alidousty C, Brandes D, Heydt C, Wagener S, Wittersheim M, Schafer SC, et al. Comparison of blood collection tubes from three different manufacturers for the collection of cell-free DNA for liquid biopsy mutation testing. J Mol Diagn. 2017;19(5):801–4.

    Article  CAS  PubMed  Google Scholar 

  25. van Dessel LF, Beije N, Helmijr JC, Vitale SR, Kraan J, Look MP, et al. Application of circulating tumor DNA in prospective clinical oncology trials—standardization of preanalytical conditions. Mol Oncol. 2017;11(3):295–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. El Messaoudi S, Rolet F, Mouliere F, Thierry AR. Circulating cell free DNA: preanalytical considerations. Clin Chim Acta. 2013;23(424):222–30.

    Article  CAS  Google Scholar 

  27. Nikolaev S, Lemmens L, Koessler T, Blouin JL, Nouspikel T. Circulating tumoral DNA: preanalytical validation and quality control in a diagnostic laboratory. Anal Biochem. 2018;11(542):34–9.

    Article  CAS  Google Scholar 

  28. Parpart-Li S, Bartlett B, Popoli M, Adleff V, Tucker L, Steinberg R, et al. The effect of preservative and temperature on the analysis of circulating tumor DNA. Clin Cancer Res. 2017;23(10):2471–7.

    Article  CAS  PubMed  Google Scholar 

  29. Wong D, Moturi S, Angkachatchai V, Mueller R, DeSantis G, van den Boom D, et al. Optimizing blood collection, transport and storage conditions for cell free DNA increases access to prenatal testing. Clin Biochem. 2013;46(12):1099–104.

    Article  CAS  PubMed  Google Scholar 

  30. Warton K, Yuwono NL, Cowley MJ, McCabe MJ, So A, Ford CE. Evaluation of Streck BCT and PAXgene stabilised blood collection tubes for cell-free circulating DNA studies in plasma. Mol Diagn Ther. 2017;21(5):563–70.

    Article  CAS  PubMed  Google Scholar 

  31. Warton K, Graham LJ, Yuwono N, Samimi G. Comparison of 4 commercial kits for the extraction of circulating DNA from plasma. Cancer Genet. 2018. https://doi.org/10.1016/j.cancergen.2018.02.004.

    Article  PubMed  Google Scholar 

  32. Perez-Barrios C, Nieto-Alcolado I, Torrente M, Jimenez-Sanchez C, Calvo V, Gutierrez-Sanz L, et al. Comparison of methods for circulating cell-free DNA isolation using blood from cancer patients: impact on biomarker testing. Transl Lung Cancer Res. 2016;5(6):665–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sorber L, Zwaenepoel K, Deschoolmeester V, Roeyen G, Lardon F, Rolfo C, et al. A comparison of cell-free DNA isolation kits: isolation and quantification of cell-free DNA in plasma. J Mol Diagn. 2017;19(1):162–8.

    Article  CAS  PubMed  Google Scholar 

  34. Kloten V, Ruchel N, Bruchle NO, Gasthaus J, Freudenmacher N, Steib F, et al. Liquid biopsy in colon cancer: comparison of different circulating DNA extraction systems following absolute quantification of KRAS mutations using Intplex allele-specific PCR. Oncotarget. 2017;8(49):86253–63.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Markus H, Contente-Cuomo T, Farooq M, Liang WS, Borad MJ, Sivakumar S, et al. Evaluation of pre-analytical factors affecting plasma DNA analysis. Sci Rep. 2018;8(1):7375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Devonshire AS, Whale AS, Gutteridge A, Jones G, Cowen S, Foy CA, et al. Towards standardisation of cell-free DNA measurement in plasma: controls for extraction efficiency, fragment size bias and quantification. Anal Bioanal Chem. 2014;406(26):6499–512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Diefenbach RJ, Lee JH, Kefford RF, Rizos H. Evaluation of commercial kits for purification of circulating free DNA. Cancer Genet. 2018;228–229:21–7.

    Article  CAS  PubMed  Google Scholar 

  38. Serrati S, De Summa S, Pilato B, Petriella D, Lacalamita R, Tommasi S, et al. Next-generation sequencing: advances and applications in cancer diagnosis. Onco Targets Ther. 2016;9:7355–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Groisberg R, Roszik J, Conley A, Patel SR, Subbiah V. The role of next-generation sequencing in sarcomas: evolution from light microscope to molecular microscope. Curr Oncol Rep. 2017;19(12):78.

    Article  CAS  PubMed  Google Scholar 

  40. Postel M, Roosen A, Laurent-Puig P, Taly V, Wang-Renault SF. Droplet-based digital PCR and next generation sequencing for monitoring circulating tumor DNA: a cancer diagnostic perspective. Expert Rev Mol Diagn. 2018;18(1):7–17.

    Article  CAS  PubMed  Google Scholar 

  41. Reddy BY, Miller DM, Tsao H. Somatic driver mutations in melanoma. Cancer. 2017;123(S11):2104–17.

    Article  PubMed  Google Scholar 

  42. Zhang T, Dutton-Regester K, Brown KM, Hayward NK. The genomic landscape of cutaneous melanoma. Pigment Cell Melanoma Res. 2016;29(3):266–83.

    Article  CAS  PubMed  Google Scholar 

  43. Lu X, Zhang Q, Wang Y, Zhang L, Zhao H, Chen C, et al. Molecular classification and subtype-specific characterization of skin cutaneous melanoma by aggregating multiple genomic platform data. J Cancer Res Clin Oncol. 2018;144(9):1635–47.

    Article  CAS  PubMed  Google Scholar 

  44. Cancer Genome Atlas N. Genomic classification of cutaneous melanoma. Cell. 2015;161(7):1681–96.

    Article  CAS  Google Scholar 

  45. Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, Theurillat JP, et al. A landscape of driver mutations in melanoma. Cell. 2012;150(2):251–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Guan J, Gupta R, Filipp FV. Cancer systems biology of TCGA SKCM: efficient detection of genomic drivers in melanoma. Sci Rep. 2015;20(5):7857.

    Article  CAS  Google Scholar 

  47. Luke JJ, Flaherty KT, Ribas A, Long GV. Targeted agents and immunotherapies: optimizing outcomes in melanoma. Nat Rev Clin Oncol. 2017;14(8):463–82.

    Article  CAS  PubMed  Google Scholar 

  48. Siroy AE, Boland GM, Milton DR, Roszik J, Frankian S, Malke J, et al. Beyond BRAF(V600): clinical mutation panel testing by next-generation sequencing in advanced melanoma. J Invest Dermatol. 2015;135(2):508–15.

    Article  CAS  PubMed  Google Scholar 

  49. Xia J, Jia P, Hutchinson KE, Dahlman KB, Johnson D, Sosman J, et al. A meta-analysis of somatic mutations from next generation sequencing of 241 melanomas: a road map for the study of genes with potential clinical relevance. Mol Cancer Ther. 2014;13(7):1918–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bailey MH, Tokheim C, Porta-Pardo E, Sengupta S, Bertrand D, Weerasinghe A, et al. Comprehensive characterization of cancer driver genes and mutations. Cell. 2018;173(2):371e18–385e18.

    Article  CAS  Google Scholar 

  51. Middleton M, Hauschild A, Thomson D, Anderson R, Burdette-Radoux S, Gehlsen K, et al. Results of a multicenter randomized study to evaluate the safety and efficacy of combined immunotherapy with interleukin-2, interferon-{alpha}2b and histamine dihydrochloride versus dacarbazine in patients with stage IV melanoma. Ann Oncol. 2007;18(10):1691–7.

    Article  CAS  PubMed  Google Scholar 

  52. Robert C, Karaszewska B, Schachter J, Rutkowski P, Mackiewicz A, Stroiakovski D, et al. Improved overall survival in melanoma with combined dabrafenib and trametinib. N Engl J Med. 2015;372(1):30–9.

    Article  CAS  PubMed  Google Scholar 

  53. Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372(4):320–30.

    Article  CAS  PubMed  Google Scholar 

  54. Wolchok JD, Chiarion-Sileni V, Gonzalez R, Rutkowski P, Grob JJ, Cowey CL, et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2017;377(14):1345–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dummer R, Ascierto PA, Gogas HJ, Arance A, Mandala M, Liszkay G, et al. Encorafenib plus binimetinib versus vemurafenib or encorafenib in patients with BRAF-mutant melanoma (COLUMBUS): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2018;19(5):603–15.

    Article  CAS  PubMed  Google Scholar 

  56. Ascierto PA, McArthur GA, Dreno B, Atkinson V, Liszkay G, Di Giacomo AM, et al. Cobimetinib combined with vemurafenib in advanced BRAF(V600)-mutant melanoma (coBRIM): updated efficacy results from a randomised, double-blind, phase 3 trial. Lancet Oncol. 2016;17(9):1248–60.

    Article  CAS  PubMed  Google Scholar 

  57. Helgadottir H, Rocha Trocoli Drakensjo I, Girnita A. Personalized medicine in malignant melanoma: towards patient tailored treatment. Front Oncol. 2018;8:202.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hogan SA, Levesque MP, Cheng PF. Melanoma immunotherapy: next-generation biomarkers. Front Oncol. 2018;8:178.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Verykiou S, Ellis RA, Lovat PE. Established and emerging biomarkers in cutaneous malignant melanoma. Healthcare (Basel). 2014;2(1):60–73.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Buder-Bakhaya K, Hassel JC. Biomarkers for clinical benefit of immune checkpoint inhibitor treatment—a review from the melanoma perspective and beyond. Front Immunol. 2018;9:1474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lim SY, Menzies AM, Rizos H. Mechanisms and strategies to overcome resistance to molecularly targeted therapy for melanoma. Cancer. 2017;123(S11):2118–29.

    Article  CAS  PubMed  Google Scholar 

  62. Wilmott JS, Rizos H, Scolyer RA, Long GV. The “tricky business” of identifying mechanisms of resistance to anti-PD-1. Clin Cancer Res. 2017;23(12):2921–3.

    Article  CAS  PubMed  Google Scholar 

  63. Shi H, Hugo W, Kong X, Hong A, Koya RC, Moriceau G, et al. Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy. Cancer Discov. 2014;4(1):80–93.

    Article  CAS  PubMed  Google Scholar 

  64. Busser B, Lupo J, Sancey L, Mouret S, Faure P, Plumas J, et al. Plasma circulating tumor DNA levels for the monitoring of melanoma patients: landscape of available technologies and clinical applications. Biomed Res Int. 2017;2017:5986129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Huynh K, Hoon DS. Liquid biopsies for assessing metastatic melanoma progression. Crit Rev Oncog. 2016;21(1–2):141–54.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Perkins G, Lu H, Garlan F, Taly V. Droplet-based digital PCR: application in cancer research. Adv Clin Chem. 2017;79:43–91.

    Article  CAS  PubMed  Google Scholar 

  67. Ashida A, Sakaizawa K, Uhara H, Okuyama R. Circulating tumour DNA for monitoring treatment response to anti-PD-1 immunotherapy in melanoma patients. Acta Derm Venereol. 2017;97(10):1212–8.

    Article  CAS  PubMed  Google Scholar 

  68. Chang GA, Tadepalli JS, Shao Y, Zhang Y, Weiss S, Robinson E, et al. Sensitivity of plasma BRAFmutant and NRASmutant cell-free DNA assays to detect metastatic melanoma in patients with low RECIST scores and non-RECIST disease progression. Mol Oncol. 2016;10(1):157–65.

    Article  CAS  PubMed  Google Scholar 

  69. Gray ES, Rizos H, Reid AL, Boyd SC, Pereira MR, Lo J, et al. Circulating tumor DNA to monitor treatment response and detect acquired resistance in patients with metastatic melanoma. Oncotarget. 2015;6(39):42008–18.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Herbreteau G, Vallee A, Knol AC, Theoleyre S, Quereux G, Varey E, et al. Quantitative monitoring of circulating tumor DNA predicts response of cutaneous metastatic melanoma to anti-PD1 immunotherapy. Oncotarget. 2018;9(38):25265–76.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Lee JH, Long GV, Boyd S, Lo S, Menzies AM, Tembe V, et al. Circulating tumour DNA predicts response to anti-PD1 antibodies in metastatic melanoma. Ann Oncol. 2017;28(5):1130–6.

    Article  CAS  PubMed  Google Scholar 

  72. Lee JH, Long GV, Menzies AM, Lo S, Guminski A, Whitbourne K, et al. Association between circulating tumor DNA and pseudoprogression in patients with metastatic melanoma treated with anti-programmed cell death 1 antibodies. JAMA Oncol. 2018;4(5):717–21.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Lee RJ, Gremel G, Marshall A, Myers KA, Fisher N, Dunn JA, et al. Circulating tumor DNA predicts survival in patients with resected high-risk stage II/III melanoma. Ann Oncol. 2018;29(2):490–6.

    Article  CAS  PubMed  Google Scholar 

  74. Sanmamed MF, Fernandez-Landazuri S, Rodriguez C, Zarate R, Lozano MD, Zubiri L, et al. Quantitative cell-free circulating BRAFV600E mutation analysis by use of droplet digital PCR in the follow-up of patients with melanoma being treated with BRAF inhibitors. Clin Chem. 2015;61(1):297–304.

    Article  CAS  PubMed  Google Scholar 

  75. Tsao SC, Weiss J, Hudson C, Christophi C, Cebon J, Behren A, et al. Monitoring response to therapy in melanoma by quantifying circulating tumour DNA with droplet digital PCR for BRAF and NRAS mutations. Sci Rep. 2015;22(5):11198.

    Article  CAS  Google Scholar 

  76. Girotti MR, Gremel G, Lee R, Galvani E, Rothwell D, Viros A, et al. Application of sequencing, liquid biopsies, and patient-derived xenografts for personalized medicine in melanoma. Cancer Discov. 2016;6(3):286–99.

    Article  CAS  PubMed  Google Scholar 

  77. McEvoy AC, Warburton L, Al-Ogaili Z, Celliers L, Calapre L, Pereira MR, et al. Correlation between circulating tumour DNA and metabolic tumour burden in metastatic melanoma patients. BMC Cancer. 2018;18(1):726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Valpione S, Gremel G, Mundra P, Middlehurst P, Galvani E, Girotti MR, et al. Plasma total cell-free DNA (cfDNA) is a surrogate biomarker for tumour burden and a prognostic biomarker for survival in metastatic melanoma patients. Eur J Cancer. 2018;88:1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Oxnard GR, Paweletz CP, Kuang Y, Mach SL, O’Connell A, Messineo MM, et al. Noninvasive detection of response and resistance in EGFR-mutant lung cancer using quantitative next-generation genotyping of cell-free plasma DNA. Clin Cancer Res. 2014;20(6):1698–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. McEvoy AC, Calapre L, Pereira MR, Giardina T, Robinson C, Khattak MA, et al. Sensitive droplet digital PCR method for detection of TERT promoter mutations in cell free DNA from patients with metastatic melanoma. Oncotarget. 2017;8(45):78890–900.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Horn S, Figl A, Rachakonda PS, Fischer C, Sucker A, Gast A, et al. TERT promoter mutations in familial and sporadic melanoma. Science. 2013;339(6122):959–61.

    Article  CAS  PubMed  Google Scholar 

  82. de la Monte SM, Moore GW, Hutchins GM. Patterned distribution of metastases from malignant melanoma in humans. Cancer Res. 1983;43(7):3427–33.

    PubMed  Google Scholar 

  83. Patel JK, Didolkar MS, Pickren JW, Moore RH. Metastatic pattern of malignant melanoma. A study of 216 autopsy cases. Am J Surg. 1978;135(6):807–10.

    Article  CAS  PubMed  Google Scholar 

  84. Ajithkumar T, Parkinson C, Fife K, Corrie P, Jefferies S. Evolving treatment options for melanoma brain metastases. Lancet Oncol. 2015;16(13):e486–97.

    Article  PubMed  Google Scholar 

  85. Momtaz P, Pentsova E, Abdel-Wahab O, Diamond E, Hyman D, Merghoub T, et al. Quantification of tumor-derived cell free DNA(cfDNA) by digital PCR (DigPCR) in cerebrospinal fluid of patients with BRAFV600 mutated malignancies. Oncotarget. 2016;7(51):85430–6.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Ballester LY, Glitza Oliva IC, Douse DY, Chen MM, Lan C, Haydu LE, et al. Evaluating circulating tumor DNA from the cerebrospinal fluid of patients with melanoma and leptomeningeal disease. J Neuropathol Exp Neurol. 2018;77(7):628–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wee EJ, Wang Y, Tsao SC, Trau M. Simple, sensitive and accurate multiplex detection of clinically important melanoma DNA mutations in circulating tumour DNA with SERS nanotags. Theranostics. 2016;6(10):1506–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hu P, Zhang S, Wu T, Ni D, Fan W, Zhu Y, et al. Fe–Au nanoparticle-coupling for ultrasensitive detections of circulating tumor DNA. Adv Mater. 2018;22:e1801690.

    Article  CAS  Google Scholar 

  89. Barel F, Guibourg B, Lambros L, Le Flahec G, Marcorelles P, Uguen A. Evaluation of a rapid, fully automated platform for detection of BRAF and NRAS mutations in melanoma. Acta Derm Venereol. 2018;98(1):44–9.

    Article  CAS  PubMed  Google Scholar 

  90. Bisschop C, Ter Elst A, Bosman LJ, Platteel I, Jalving M, van den Berg A, et al. Rapid BRAF mutation tests in patients with advanced melanoma: comparison of immunohistochemistry, droplet digital PCR, and the Idylla mutation platform. Melanoma Res. 2018;28(2):96–104.

    Article  CAS  PubMed  Google Scholar 

  91. Harle A, Salleron J, Franczak C, Dubois C, Filhine-Tressarieu P, Leroux A, et al. Detection of BRAF mutations using a fully automated platform and comparison with high resolution melting, real-time allele specific amplification, immunohistochemistry and next generation sequencing assays, for patients with metastatic melanoma. PLoS One. 2016;11(4):e0153576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Seremet T, Planken S, Schreuer M, Jansen Y, Delaunoy M, El Housni H, et al. Illustrative cases for monitoring by quantitative analysis of BRAF/NRAS ctDNA mutations in liquid biopsies of metastatic melanoma patients who gained clinical benefits from anti-PD1 antibody therapy. Melanoma Res. 2018;28(1):65–70.

    Article  CAS  PubMed  Google Scholar 

  93. Uguen A, Troncone G. A review on the Idylla platform: towards the assessment of actionable genomic alterations in one day. J Clin Pathol. 2018;71(9):757–62.

    Article  CAS  PubMed  Google Scholar 

  94. Griewank KG, Schilling B. Next-generation sequencing to guide treatment of advanced melanoma. Am J Clin Dermatol. 2017;18(3):303–10.

    Article  PubMed  Google Scholar 

  95. Reiman A, Kikuchi H, Scocchia D, Smith P, Tsang YW, Snead D, et al. Validation of an NGS mutation detection panel for melanoma. BMC Cancer. 2017;17(1):150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Miraflor AP, de Abreu FB, Peterson JD, Turner SA, Amos CI, Tsongalis GJ, et al. Somatic mutation analysis in melanoma using targeted next generation sequencing. Exp Mol Pathol. 2017;103(2):172–7.

    Article  CAS  PubMed  Google Scholar 

  97. Giardina T, Robinson C, Grieu-Iacopetta F, Millward M, Iacopetta B, Spagnolo D, et al. Implementation of next generation sequencing technology for somatic mutation detection in routine laboratory practice. Pathology. 2018;50(4):389–401.

    Article  CAS  PubMed  Google Scholar 

  98. Carlson JA, Caldeira Xavier JC Jr, Tarasen A, Sheehan CE, Otto G, Miller VA, et al. Next-generation sequencing reveals pathway activations and new routes to targeted therapies in cutaneous metastatic melanoma. Am J Dermatopathol. 2017;39(1):1–13.

    Article  PubMed  Google Scholar 

  99. Mullauer L. Next generation sequencing: clinical applications in solid tumours. Memo. 2017;10(4):244–7.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Kamps R, Brandao RD, Bosch BJ, Paulussen AD, Xanthoulea S, Blok MJ, et al. Next-generation sequencing in oncology: genetic diagnosis, risk prediction and cancer classification. Int J Mol Sci. 2017;18(2):308.

    Article  CAS  PubMed Central  Google Scholar 

  101. Chicard M, Colmet-Daage L, Clement N, Danzon A, Bohec M, Bernard V, et al. Whole-exome sequencing of cell-free DNA reveals temporo-spatial heterogeneity and identifies treatment-resistant clones in neuroblastoma. Clin Cancer Res. 2018;24(4):939–49.

    Article  CAS  PubMed  Google Scholar 

  102. Klevebring D, Neiman M, Sundling S, Eriksson L, Darai Ramqvist E, Celebioglu F, et al. Evaluation of exome sequencing to estimate tumor burden in plasma. PLoS One. 2014;9(8):e104417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Luo H, Li H, Hu Z, Wu H, Liu C, Li Y, et al. Noninvasive diagnosis and monitoring of mutations by deep sequencing of circulating tumor DNA in esophageal squamous cell carcinoma. Biochem Biophys Res Commun. 2016;471(4):596–602.

    Article  CAS  PubMed  Google Scholar 

  104. Manier S, Park J, Capelletti M, Bustoros M, Freeman SS, Ha G, et al. Whole-exome sequencing of cell-free DNA and circulating tumor cells in multiple myeloma. Nat Commun. 2018;9(1):1691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Olmedillas-Lopez S, Garcia-Olmo DC, Garcia-Arranz M, Peiro-Pastor R, Aguado B, Garcia-Olmo D. Liquid biopsy by NGS: differential presence of exons (DPE) in cell-free DNA reveals different patterns in metastatic and nonmetastatic colorectal cancer. Cancer Med. 2018;7(5):1706–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Vandekerkhove G, Todenhofer T, Annala M, Struss WJ, Wong A, Beja K, et al. Circulating tumor DNA reveals clinically actionable somatic genome of metastatic bladder cancer. Clin Cancer Res. 2017;23(21):6487–97.

    Article  CAS  PubMed  Google Scholar 

  107. Annala M, Vandekerkhove G, Khalaf D, Taavitsainen S, Beja K, Warner EW, et al. Circulating tumor DNA genomics correlate with resistance to abiraterone and enzalutamide in prostate cancer. Cancer Discov. 2018;8(4):444–57.

    Article  CAS  PubMed  Google Scholar 

  108. Dietz S, Schirmer U, Merce C, von Bubnoff N, Dahl E, Meister M, et al. Low input whole-exome sequencing to determine the representation of the tumor exome in circulating DNA of non-small cell lung cancer patients. PLoS One. 2016;11(8):e0161012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Cutts A, Venn O, Dilthey A, Gupta A, Vavoulis D, Dreau H, et al. Characterisation of the changing genomic landscape of metastatic melanoma using cell free DNA. NPJ Genom Med. 2017;4(2):25.

    Article  CAS  Google Scholar 

  110. Carlino MS, Long GV, Kefford RF, Rizos H. Targeting oncogenic BRAF and aberrant MAPK activation in the treatment of cutaneous melanoma. Crit Rev Oncol Hematol. 2015;96(3):385–98.

    Article  PubMed  Google Scholar 

  111. de Unamuno Bustos B, Murria Estal R, Perez Simo G, de Juan Jimenez I, Escutia Munoz B, Rodriguez Serna M, et al. Towards personalized medicine in melanoma: implementation of a clinical next-generation sequencing panel. Sci Rep. 2017;7(1):495.

    Article  CAS  Google Scholar 

  112. Kaisaki PJ, Cutts A, Popitsch N, Camps C, Pentony MM, Wilson G, et al. Targeted next-generation sequencing of plasma DNA from cancer patients: factors influencing consistency with tumour DNA and prospective investigation of its utility for diagnosis. PLoS One. 2016;11(9):e0162809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Malapelle U, Mayo de-Las-Casas C, Rocco D, Garzon M, Pisapia P, Jordana-Ariza N, et al. Development of a gene panel for next-generation sequencing of clinically relevant mutations in cell-free DNA from cancer patients. Br J Cancer. 2017;116(6):802–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Gangadhar TC, Savitch SL, Yee SS, Xu W, Huang AC, Harmon S, et al. Feasibility of monitoring advanced melanoma patients using cell-free DNA from plasma. Pigment Cell Melanoma Res. 2018;31(1):73–81.

    Article  CAS  PubMed  Google Scholar 

  115. Du J, Wu X, Tong X, Wang X, Wei J, Yang Y, et al. Circulating tumor DNA profiling by next generation sequencing reveals heterogeneity of crizotinib resistance mechanisms in a gastric cancer patient with MET amplification. Oncotarget. 2017;8(16):26281–7.

    PubMed  PubMed Central  Google Scholar 

  116. Zill OA, Banks KC, Fairclough SR, Mortimer SA, Vowles JV, Mokhtari R, et al. The landscape of actionable genomic alterations in cell-free circulating tumor DNA from 21,807 advanced cancer patients. Clin Cancer Res. 2018;24(15):3528–38.

    Article  CAS  PubMed  Google Scholar 

  117. Coombs CC, Zehir A, Devlin SM, Kishtagari A, Syed A, Jonsson P, et al. Therapy-related clonal hematopoiesis in patients with non-hematologic cancers is common and associated with adverse clinical outcomes. Cell Stem Cell. 2017;21(3):374e4–382e4.

    Article  CAS  Google Scholar 

  118. Kuderer NM, Burton KA, Blau S, Rose AL, Parker S, Lyman GH, et al. Comparison of 2 commercially available next-generation sequencing platforms in oncology. JAMA Oncol. 2017;3(7):996–8.

    Article  PubMed  Google Scholar 

  119. Cabel L, Proudhon C, Romano E, Girard N, Lantz O, Stern MH, et al. Clinical potential of circulating tumour DNA in patients receiving anticancer immunotherapy. Nat Rev Clin Oncol. 2018;15(10):639–50.

    Article  CAS  PubMed  Google Scholar 

  120. Khagi Y, Kurzrock R, Patel SP. Next generation predictive biomarkers for immune checkpoint inhibition. Cancer Metastasis Rev. 2017;36(1):179–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Koeppel F, Blanchard S, Jovelet C, Genin B, Marcaillou C, Martin E, et al. Whole exome sequencing for determination of tumor mutation load in liquid biopsy from advanced cancer patients. PLoS One. 2017;12(11):e0188174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Khagi Y, Goodman AM, Daniels GA, Patel SP, Sacco AG, Randall JM, et al. Hypermutated circulating tumor DNA: correlation with response to checkpoint inhibitor-based immunotherapy. Clin Cancer Res. 2017;23(19):5729–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Gandara DR, Paul SM, Kowanetz M, Schleifman E, Zou W, Li Y, et al. Blood-based tumor mutational burden as a predictor of clinical benefit in non-small-cell lung cancer patients treated with atezolizumab. Nat Med. 2018;24(9):1441–8.

    Article  CAS  PubMed  Google Scholar 

  124. Zhu ML, Zhou L, Sadri N. Comparison of targeted next generation sequencing (NGS) versus isolated BRAF V600E analysis in patients with metastatic melanoma. Virchows Arch. 2018;473(3):371–7.

    Article  CAS  PubMed  Google Scholar 

  125. Khier S, Lohan L. Kinetics of circulating cell-free DNA for biomedical applications: critical appraisal of the literature. Future Sci OA. 2018;4(4):FSO295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Trigg RM, Martinson LJ, Parpart-Li S, Shaw JA. Factors that influence quality and yield of circulating-free DNA: a systematic review of the methodology literature. Heliyon. 2018;4(7):e00699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Best MG, Wesseling P, Wurdinger T. Tumor-educated platelets as a noninvasive biomarker source for cancer detection and progression monitoring. Cancer Res. 2018;78(13):3407–12.

    CAS  PubMed  Google Scholar 

  128. Mader S, Pantel K. Liquid biopsy: current status and future perspectives. Oncol Res Treat. 2017;40(7–8):404–8.

    Article  CAS  PubMed  Google Scholar 

  129. Wang J, Chang S, Li G, Sun Y. Application of liquid biopsy in precision medicine: opportunities and challenges. Front Med. 2017;11(4):522–7.

    Article  PubMed  Google Scholar 

  130. Khetrapal P, Lee MWL, Tan WS, Dong L, de Winter P, Feber A, et al. The role of circulating tumour cells and nucleic acids in blood for the detection of bladder cancer: a systematic review. Cancer Treat Rev. 2018;66:56–63.

    Article  CAS  PubMed  Google Scholar 

  131. Zhu J, Chen S, Zhang F, Wang L. Cell-free eccDNAs: a new type of nucleic acid component for liquid biopsy? Mol Diagn Ther. 2018;22(5):515–22.

    Article  CAS  PubMed  Google Scholar 

  132. Momen-Heravi F, Getting SJ, Moschos SA. Extracellular vesicles and their nucleic acids for biomarker discovery. Pharmacol Ther. 2018. https://doi.org/10.1016/j.pharmthera.2018.08.002.

    Article  PubMed  Google Scholar 

  133. Mansilla C, Soria E, Ramirez N. The identification and isolation of CTCs: a biological Rubik’s cube. Crit Rev Oncol Hematol. 2018;126:129–34.

    Article  PubMed  Google Scholar 

  134. Marsavela G, Aya-Bonilla CA, Warkiani ME, Gray ES, Ziman M. Melanoma circulating tumor cells: benefits and challenges required for clinical application. Cancer Lett. 2018;28(424):1–8.

    Article  CAS  Google Scholar 

  135. Reid AL, Freeman JB, Millward M, Ziman M, Gray ES. Detection of BRAF-V600E and V600K in melanoma circulating tumour cells by droplet digital PCR. Clin Biochem. 2015;48(15):999–1002.

    Article  CAS  PubMed  Google Scholar 

  136. Hong X, Sullivan RJ, Kalinich M, Kwan TT, Giobbie-Hurder A, Pan S, et al. Molecular signatures of circulating melanoma cells for monitoring early response to immune checkpoint therapy. Proc Natl Acad Sci USA. 2018;115(10):2467–72.

    Article  CAS  PubMed  Google Scholar 

  137. Vagner T, Spinelli C, Minciacchi VR, Balaj L, Zandian M, Conley A, et al. Large extracellular vesicles carry most of the tumour DNA circulating in prostate cancer patient plasma. J Extracell Vesicles. 2018;7(1):1505403.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Chae YK, Davis AA, Jain S, Santa-Maria C, Flaum L, Beaubier N, et al. Concordance of genomic alterations by next-generation sequencing in tumor tissue versus circulating tumor DNA in breast cancer. Mol Cancer Ther. 2017;16(7):1412–20.

    Article  CAS  PubMed  Google Scholar 

  139. Yang N, Li Y, Liu Z, Qin H, Du D, Cao X, et al. The characteristics of ctDNA reveal the high complexity in matching the corresponding tumor tissues. BMC Cancer. 2018;18(1):319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Newman AM, Bratman SV, To J, Wynne JF, Eclov NC, Modlin LA, et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med. 2014;20(5):548–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Agarwal N, Pal SK, Hahn AW, Nussenzveig RH, Pond GR, Gupta SV, et al. Characterization of metastatic urothelial carcinoma via comprehensive genomic profiling of circulating tumor DNA. Cancer. 2018;124(10):2115–24.

    Article  CAS  PubMed  Google Scholar 

  142. Barata PC, Koshkin VS, Funchain P, Sohal D, Pritchard A, Klek S, et al. Next-generation sequencing (NGS) of cell-free circulating tumor DNA and tumor tissue in patients with advanced urothelial cancer: a pilot assessment of concordance. Ann Oncol. 2017;28(10):2458–63.

    Article  CAS  PubMed  Google Scholar 

  143. Lanman RB, Mortimer SA, Zill OA, Sebisanovic D, Lopez R, Blau S, et al. Analytical and clinical validation of a digital sequencing panel for quantitative, highly accurate evaluation of cell-free circulating tumor DNA. PLoS One. 2015;10(10):e0140712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. McCoach CE, Blakely CM, Banks KC, Levy B, Chue BM, Raymond VM, et al. Clinical utility of cell-free DNA for the detection of ALK fusions and genomic mechanisms of ALK inhibitor resistance in non-small cell lung cancer. Clin Cancer Res. 2018;24(12):2758–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Rossi G, Mu Z, Rademaker AW, Austin LK, Strickland KS, Costa RLB, et al. Cell-free DNA and circulating tumor cells: comprehensive liquid biopsy analysis in advanced breast cancer. Clin Cancer Res. 2018;24(3):560–8.

    Article  CAS  PubMed  Google Scholar 

  146. Yang M, Topaloglu U, Petty WJ, Pagni M, Foley KL, Grant SC, et al. Circulating mutational portrait of cancer: manifestation of aggressive clonal events in both early and late stages. J Hematol Oncol. 2017;10(1):100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Barata PC, Mendiratta P, Heald B, Klek S, Grivas P, Sohal DPS, et al. Targeted next-generation sequencing in men with metastatic prostate cancer: a pilot study. Target Oncol. 2018;13(4):495–500.

    Article  PubMed  Google Scholar 

  148. Thompson JC, Yee SS, Troxel AB, Savitch SL, Fan R, Balli D, et al. Detection of therapeutically targetable driver and resistance mutations in lung cancer patients by next-generation sequencing of cell-free circulating tumor DNA. Clin Cancer Res. 2016;22(23):5772–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Schwaederle M, Chattopadhyay R, Kato S, Fanta PT, Banks KC, Choi IS, et al. Genomic alterations in circulating tumor DNA from diverse cancer patients identified by next-generation sequencing. Cancer Res. 2017;77(19):5419–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Clark TA, Chung JH, Kennedy M, Hughes JD, Chennagiri N, Lieber DS, et al. Analytical validation of a hybrid capture-based next-generation sequencing clinical assay for genomic profiling of cell-free circulating tumor DNA. J Mol Diagn. 2018;20(5):686–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Jamal-Hanjani M, Wilson GA, Horswell S, Mitter R, Sakarya O, Constantin T, et al. Detection of ubiquitous and heterogeneous mutations in cell-free DNA from patients with early-stage non-small-cell lung cancer. Ann Oncol. 2016;27(5):862–7.

    Article  CAS  PubMed  Google Scholar 

  152. Kirkizlar E, Zimmermann B, Constantin T, Swenerton R, Hoang B, Wayham N, et al. Detection of clonal and subclonal copy-number variants in cell-free DNA from patients with breast cancer using a massively multiplexed PCR methodology. Transl Oncol. 2015;8(5):407–16.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Abbosh C, Birkbak NJ, Wilson GA, Jamal-Hanjani M, Constantin T, Salari R, et al. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature. 2017;545(7655):446–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russell J. Diefenbach.

Ethics declarations

Funding

Russell J. Diefenbach was supported in part by a donation to Melanoma Institute Australia from the Clearbridge Foundation. This work was also supported in part by the National Health and Medical Research Council (APP1093017 and APP1128951). Helen Rizos is supported by a National Health and Medical Research Council Research Fellowship.

Conflict of interest

Russell J. Diefenbach, Jenny H. Lee, and Helen Rizos declare that they have no conflicts of interest that might be relevant to the contents of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diefenbach, R.J., Lee, J.H. & Rizos, H. Monitoring Melanoma Using Circulating Free DNA. Am J Clin Dermatol 20, 1–12 (2019). https://doi.org/10.1007/s40257-018-0398-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40257-018-0398-x

Navigation