Skip to main content

Recent Approaches and Strategies in the Generation of Anti-human Cytomegalovirus Vaccines

  • Protocol
  • First Online:
Human Cytomegaloviruses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2244))

Abstract

Human cytomegalovirus is the largest human herpesvirus and shares many core features of other herpesviruses such as tightly regulated gene expression during genome replication and latency as well as the establishment of lifelong persistence following infection. In contrast to stereotypic clinical syndromes associated with alpha-herpesvirus infections, almost all primary HCMV infections are asymptomatic and acquired early in life in most populations in the world. Although asymptomatic in most individuals, HCMV is a major cause of disease in hosts with deficits in adaptive and innate immunity such as infants who are infected in utero and allograft recipients following transplantation. Congenital HCMV is a commonly acquired infection in the developing fetus that can result in a number of neurodevelopmental abnormalities. Similarly, HCMV is a major cause of disease in allograft recipients in the immediate and late posttransplant period and is thought to be a major contributor to chronic allograft rejection. Even though HCMV induces robust innate and adaptive immune responses, it also encodes a vast array of immune evasion functions that are thought aid in its persistence. Immune correlates of protective immunity that prevent or modify intrauterine HCMV infection remain incompletely defined but are thought to consist primarily of adaptive responses in the pregnant mother, thus making congenital HCMV a potentially vaccine modifiable disease. Similarly, HCMV infection in allograft recipients is often more severe in recipients without preexisting adaptive immunity to HCMV. Thus, there has been a considerable effort to modify HCMV specific immunity in transplant recipient either through active immunization or passive transfer of adaptive effector functions. Although efforts to develop an efficacious vaccine and/or passive immunotherapy to limit HCMV disease have been underway for nearly six decades, most have met with limited success at best. In contrast to previous efforts, current HCMV vaccine development has relied on observations of unique properties of HCMV in hopes of reproducing immune responses that at a minimum will be similar to that following natural infection. However, more recent findings have suggested that immunity following naturally acquired HCMV infection may have limited protective activity and almost certainly, is not sterilizing. Such observations suggest that either the induction of natural immunity must be specifically tailored to generate protective activity or alternatively, that providing targeted passive immunity to susceptible populations could be prove to be more efficacious.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krech U, Konjajev Z, Jung M (1971) Congenital cytomegalovirus infection in siblings from consecutive pregnancies. Helv Paediatr Acta 26:355–362

    CAS  PubMed  Google Scholar 

  2. Gold E, Nankervis GA (1976) Cytomegalovirus. In: Evans AS (ed) Viral infections of humans: epidemiology and control. Plenum Press, New York, pp 143–161

    Chapter  Google Scholar 

  3. Pass RF, Dworsky ME, Whitley RJ, August AM, Stagno S, Alford CA Jr (1981) Specific lymphocyte blastogenic responses in children with cytomegalovirus and herpes simplex virus infections acquired early in infancy. Infect Immun 34:166–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stagno S, Pass RF, Dworsky ME, Alford CA (1982) Maternal cytomegalovirus infection and perinatal transmission. Clin Obstet Gynecol 25:563–576

    Article  CAS  PubMed  Google Scholar 

  5. Marshall GS, Stout GG (2005) Cytomegalovirus seroprevalence among women of childbearing age during a 10-year period. Am J Perinatol 22:371–376

    Article  PubMed  Google Scholar 

  6. Kenneson A, Cannon MJ (2007) Review and meta-analysis of the epidemiology of congenital cytomegalovirus (CMV) infection. Rev Med Virol 17:253–276

    Article  PubMed  Google Scholar 

  7. Cannon MJ, Schmidt DS, Hyde TB (2010) Review of cytomegalovirus seroprevalence and demographic characteristics associated with infection. Rev Med Virol 20:202–213

    Article  PubMed  Google Scholar 

  8. Hyde TB, Schmidt DS, Cannon MJ (2010) Cytomegalovirus seroconversion rates and risk factors: implications for congenital CMV. Rev Med Virol 20:311–326

    Article  PubMed  Google Scholar 

  9. Hutto C, Ricks R, Garvie M, Pass RF (1985) Epidemiology of cytomegalovirus infections in young children: day care vs. home care. Pediatr Infect Dis 4:149–152

    Article  CAS  PubMed  Google Scholar 

  10. Stagno S, Pass RF, Cloud G, Britt WJ, Henderson RE, Walton PD, Veren DA, Page F, Alford CA (1986) Primary Cytomegalovirus Infection in Pregnancy: Incidence, transmission to fetus and clinical outcome. J Am Med Assoc 256:1904–1908

    Article  CAS  Google Scholar 

  11. Adler SP (1989) Cytomegalovirus and child day care. Evidence for an increased infection rate among day-care workers. N Engl J Med 321:1290–1296

    Article  CAS  PubMed  Google Scholar 

  12. Seo S, Cho Y, Park J (2009) Serologic screening of pregnant Korean women for primary human cytomegalovirus infection using IgG avidiyt test. Korean J Lab Med 29:557–562

    CAS  PubMed  Google Scholar 

  13. Yamamoto AY, Castellucci RA, Aragon DC, Mussi-Pinhata MM (2012) Early high CMV seroprevalence in pregnant women from a population with a high rate of congenital infection. Epidemiol Infect 141:1–5

    Google Scholar 

  14. Saraswathy TS, Az-Ulhusna A, Asshikin RN, Suriani S, Zainah S (2011) Seroprevalence of cytomegalovirus infection in pregnant women and associated role in obstetric complications: a preliminary study. Southeast Asian J Trop Med Public Health 42:320–322

    CAS  PubMed  Google Scholar 

  15. Akinbami AA, Rabiu KA, Adewunmi AA, Wright KO, Dosunmu AO, Adeyemo TA, Adediran A, Osunkalu VO (2011) Seroprevalence of cytomegalovirus antibodies amongst normal pregnant women in Nigeria. Int J Women’s Health 3:423–428

    Article  CAS  Google Scholar 

  16. Arapovic J, Rajic B, Pati S, Brizic I, Azinovic I, Šušak B, Ostojic M, Tutiš B, Raguž AB, Tomic V, Jonjic S, Boppana S (2020) Cytomegalovirus Seroprevalence and Birth Prevalence of Congenital CMV Infection in Bosnia and Herzegovina: A Single-Center Experience. Pediatr Infect Dis J 39:140–144

    Article  PubMed  Google Scholar 

  17. Hayes D, Danks M, Givas H, Jack I (1972) Cytomegalovirus in human milk. N Engl J Med 287:177

    Article  CAS  PubMed  Google Scholar 

  18. Lang DJ, Kummer JF (1975) Cytomegalovirus in semen: observations in selected populations. J Infect Dis 132:472–473

    Article  CAS  PubMed  Google Scholar 

  19. Reynolds DW, Stagno S, Hosty TS, Tiller M, Alford CA (1973) Maternal cytomegalovirus excretion and perinatal infection. N Engl J Med 289:1–5

    Article  CAS  PubMed  Google Scholar 

  20. Alford CA, Stagno S, Pass RF (1980) Natural history of perinatal cytomegalovirus infection. In: Perinatal Infections. Excerpta Medical, Amsterdam, pp 125–147

    Google Scholar 

  21. Gold E, Nankervis GA (1982) Cytomegalovirus. In: Evans AS (ed) Viral infections of humans: epidemiology and control, 2nd edn. Plenum Press, New York, pp 167–186

    Chapter  Google Scholar 

  22. Bate SL, Dollard SC, Cannon MJ (2010) Cytomegalovirus seroprevalence in the United States: the national health and nutrition examination surveys, 1988-2004. Clin Infect Dis 50:1439–1447

    Article  PubMed  Google Scholar 

  23. Puhakka L, Sarvikivi E, Lappalainen M, Surcel HM, Saxen H (2016) Decrease in seroprevalence for herpesviruses among pregnant women in Finland: cross-sectional study of three time points 1992, 2002 and 2012. Infect Dis 48:406–410

    Article  CAS  Google Scholar 

  24. Schopfer K, Lauber E, Krech U (1978) Congenital cytomegalovirus infection in newborn infants of mothers infected before pregnancy. Arch Dis Child 53:536–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vial P, Torres J, Stagno S, Gonzalez E, Donoso E, Alford CA, Hirsch T, Rodriguez L (1985) Serological screening for cytomegalovirus, rubella virus, herpes simpelx virus, hepatitis B virus and Toxoplasma gondii in two populations of pregnant women in Chile. Bull Pan Am Health Organ 99:53–61

    Google Scholar 

  26. Mussi-Pinhata MM, Yamamoto AY, Moura-Britto RM, Lima- Issacs, M., Boppana, S., and Britt, W. J. (2009) Birth prevalence and natural history of congenital cytomegalovirus (CMV) infection in highly seroimmune population. Clin Infect Dis 49:522–528

    Article  PubMed  Google Scholar 

  27. Dar L, Pati SK, Patro AR, Deorari AK, Rai S, Kant S, Broor S, Fowler KB, Britt WJ, Boppana SB (2008) Congenital cytomegalovirus infection in a highly seropositive semi-urban population in India. Pediatr Infect Dis J 27:841–843

    Article  PubMed  Google Scholar 

  28. Stagno S, Reynolds DW, Pass RF, Alford CA (1980) Breast milk and the risk of cytomegalovirus infection. N Engl J Med 302:1073–1076

    Article  CAS  PubMed  Google Scholar 

  29. Hamprecht K, Maschmann J, Vochem M, Dietz K, Speer CP, Jahn G (2001) Epidemiology of transmission of cytomegalovirus from mother to preterm infants by breastfeeding. Lancet 357:513–518

    Article  CAS  PubMed  Google Scholar 

  30. Sohn YM, Park KI, Lee C, Han DG, Lee WY (1992) Congenital cytomegalovirus infection in Korean population with very high prevalence of maternal immunity. J Kor Med Sci 7:47–51

    Article  CAS  Google Scholar 

  31. van der Sande MAB, Kaye S, Miles DJC, Waight P, Jeffries DJ, Ojoula OO, Palmero M, Pinder M, Ismaili J, Flanagan KL, Aveika AA, Rowland-Jones S, McConkey SJ, Whittle H, Marchant A (2007) Risk factors for and clinical outcome of congenital cytomegalovirus infection in a peri-urban West-African birth cohort. PLoS One 2:e492

    Article  PubMed  PubMed Central  Google Scholar 

  32. Fowler KB, Stagno S, Pass RF (1993) Maternal age and congenital cytomegalovirus infection: screening of two diverse newborn populations, 1980-1990. J Infect Dis 168:552–556

    Article  CAS  PubMed  Google Scholar 

  33. Preece PM, Tookey P, Ades A, Peckham CS (1986) Congenital cytomegalovirus infection: predisposing maternal factors. J Epidemiol Community Health 40:205–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fowler KB, Stagno S, Pass RF (1991) Rates of congenital cytomegalovirus infection based on newborn screening in two populations over an eleven year interval. Pediatr Res 29:90A

    Google Scholar 

  35. Gompels UA, Larke N, Sanz-Ramos M, Bates M, Musonda K, Manno D, Siame J, Monze M, Filteau S, Group., a. t. C. S (2012) Human cytomegalovirus infant infection adversely affects growth and development in maternally HIV-exposed and unexposed infants in Zambia. Clin Infect Dis 54:434–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Manicklal S, van Niekerk AM, Kroon SM, Hutto C, Novak Z, Pati SK, Chowdhury N, Hsiao NY, Boppana SB (2014) Birth prevalence of congenital CMV among infants of HIV-infected women on prenatal antiretroviral prophylaxis in South Africa. Clin Infect Dis 58(10):1467–1472

    Article  CAS  PubMed  Google Scholar 

  37. Mwaanza N, Chilukutu L, Tembo J, Kabwe M, Musonda K, Kapasa M, Chabala C, Sinyangwe S, Mwaba P, Zulma A, Bates M (2013) High rates of congenital cytomegalovirus infection linked with maternal HIV infection among neonatal admissions at a large referral center in Sub-Saharan Africa. Clin Infect Dis 58(5):728–735

    Article  PubMed  Google Scholar 

  38. Adachi K, Xu J, Ank B, Watts DH, Camarca M, Mofenson LM, Pilotto JH, Joao E, Gray G, Theron G, Santos B, Fonseca R, Kreitchmann R, Pinto J, Mussi-Pinhata MM, Machado DM, Ceriotto M, Morgado MG, Bryson YJ, Veloso VG, Grinsztejn B, Mirochnick M, Moye J, Nielsen-Saines K, Team, f. t. N. H. S (2018) Congenital Cytomegalovirus and HIV Perinatal Transmission. Pediatr Infect Dis J 37:1016–1021

    Article  PubMed  PubMed Central  Google Scholar 

  39. Pathirana J, Groome M, Dorfman J, Kwatra G, Boppana S, Cutland C, Jones S, Madhi SA (2019) Prevalence of congenital cytomegalovirus infection and associated risk of in utero Human Immunodeficiency Virus (HIV) acquisition in a high-HIV prevalence setting, South Africa. Clin Infect Dis 69:1789–1796

    Article  PubMed  Google Scholar 

  40. Jordan MC, Rousseau WE, Noble GR, Stewart JA, Chin TDY (1973) Association of cervical cytomegaloviruses with venereal disease. N Engl J Med 288(18):932–934

    Article  CAS  PubMed  Google Scholar 

  41. Willmott FE (1975) Cytomegalovirus in female patients attending a VD clinic. Brit J Vener Dis 51:278–280

    CAS  Google Scholar 

  42. Drew WL, Mintz L, Miner RC, Sands M, Ketterer B (1981) Prevalence of cytomegalovirus infection in homosexual men. J Infect Dis 143:188–192

    Article  CAS  PubMed  Google Scholar 

  43. Chandler SH, Holmes KK, Wentworth BB, Gutman LT, Wiesner PJ, Alexander ER, Handsfield HH (1985) The Epidemiology of cytomegaloviral infection in women attending a sexually transmitted disease clinic. J Infect Dis 152:597–605

    Article  CAS  PubMed  Google Scholar 

  44. Sohn YM, Oh MK, Balcarek KB, Cloud GA, Pass RF (1991) Cytomegalovirus infection in sexually active adolescents. J Infect Dis 163:460–463

    Article  CAS  PubMed  Google Scholar 

  45. Knox GE, Pass RF, Reynolds DW, Stagno S, Alford CA (1979) Comparative prevalence of subclinical cytomegalovirus and herpes simplex virus infections in the genital and urinary tracts of low income, urban females. J Infect Dis 140:419–422

    Article  CAS  PubMed  Google Scholar 

  46. Ahlfors K, Harris S, Ivarsson S, Svanberg L (1981) Secondary maternal cytomegalovirus infection causing symptomatic congenital infection. N Engl J Med 305:284

    Article  CAS  PubMed  Google Scholar 

  47. Stagno S, Pass RF, Dworsky ME, Henderson RE, Moore EG, Walton PD, Alford CA (1982) Congenital cytomegalovirus infection: The relative importance of primary and recurrent maternal infection. N Engl J Med 306:945–949

    Article  CAS  PubMed  Google Scholar 

  48. Ahlfors K, Forsgren M, Ivarsson SA, Harris S, Svanberg L (1983) Congenital cytomegalovirus infection: on the relation between type and time of maternal infection and infant’s symptoms. Scand J Infect Dis 15:129–138

    Article  CAS  PubMed  Google Scholar 

  49. Ross LA (1995) Rubella, Adolescent medicine (Philadelphia, Pa.) 6, pp. 15–26

    Google Scholar 

  50. Stagno S, Pass RF, Dworsky ME, Alford CA (1983) Congenital and perinatal cytomegaloviral infections. Semin Perinatol 7:31–42

    CAS  PubMed  Google Scholar 

  51. Fowler KB, Stagno S, Pass RF, Britt WJ, Boll TJ, Alford CA (1992) The outcome of congenital cytomegalovirus infection in relation to maternal antibody status. N Engl J Med 326:663–667

    Article  CAS  PubMed  Google Scholar 

  52. Demmler GJ (1991) Infectious diseases society of america and centers for disease control. Summary of a workshop on surveillance for congenital cytomegalovirus disease. Rev Infect Dis 13:315–329

    Article  CAS  PubMed  Google Scholar 

  53. Boppana SB, Fowler KB, Britt WJ, Stagno S, Pass RF (1999) Symptomatic congenital cytomegalovirus infection in infants born to mothers with preexisting immunity to cytomegalovirus. Pediatrics 104:55–60

    Article  CAS  PubMed  Google Scholar 

  54. Ahlfors K, Ivarsson S, Harris S (1999) Report on a long-term study of maternal and congenital cytomegalovirus infection in Sweden. Review of prospective studies available in the literature. Scand J Infect Dis 31:443–457

    Article  CAS  PubMed  Google Scholar 

  55. Yamamoto AY, Mussi-Pinhata MM, Isaac MDL, Amaral FR, Carvalheiro CG, Aragon DC, da Silva Mafredi AK, Boppana SB, Britt WJ (2011) Congenital cytomegalovirus infection as a cause of sensorineural hearing loss in a highly seropositive population. Ped Infect Dis J 30:1043–4046

    Article  Google Scholar 

  56. Townsend CL, Forsgren M, Ahlfors K, Ivarsson S, Tookey P, Peckham CS (2013) Long-term outcomes of congenital cytomegalovirus infection in Sweden and the United Kingdom. Clin Infect Dis 56:1232–1239

    Article  PubMed  PubMed Central  Google Scholar 

  57. Puhakka L, Renko M, Helminen M, Peltola V, Heiskanen-Kosma T, Lappalainen M, Surcel H-M, Lönnqvist T, Saxen H (2017) Primary versus non-primary maternal cytomegalovirus infection as a cause of symptomatic congenital infection - register-based study from Finland. Infect Dis 49:445–453

    Article  Google Scholar 

  58. Wang C, Zhang X, Bialek S, Cannon MJ (2011) Attribution of congenital cytomegalovirus infection to primary versus non-primary maternal infection. Clin Infect Dis 52:e11–e13

    Article  PubMed  Google Scholar 

  59. Yamamoto AY, Anastasio ART, Massuda ET, Isaac ML, Manfredi AKS, Cavalcante JMS, Carnevale-Silva A, Fowler KB, Boppana S, Britt WJ, Mussi-Pinhata MM (2019) Contribution of congenital cytomegalovirus (cCMV) to permanent hearing loss in a highly seropositive population: "The BraCHS study". Clin Infect Dis 70(7):1379–1384

    Article  PubMed Central  Google Scholar 

  60. Huang ES, Alford CA, Reynolds DW, Stagno S, Pass RF (1980) Molecular epidemiology of cytomegalovirus infections in women and their infants. N Engl J Med 303:958–962

    Article  CAS  PubMed  Google Scholar 

  61. Renzette N, Bhattacharjee B, Jenson JD, Gibson L, Kowalik TF (2011) Extensive genome-wide variability of human cytomegalovirus in congenitally infected infants. PLoS Pathog 7:e1001344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ross SA, Novak Z, Pati S, Patro RK, Blumenthal J, Danthaluri VR, Ahmed A, Michaels MG, Sanchez PJ, Bernstein DI, Tolan RW, Palmer AL, Britt WJ, Fowler KB, Boppana SB (2011) Mixed infection and strain diversity in congenital cytomegalovirus infection. J Infect Dis 204:1003–1007

    Article  PubMed  PubMed Central  Google Scholar 

  63. Dobbins GC, Patki A, Chen D, Tiwari HK, Hendrickson C, Britt WJ, Fowler K, Chen JY, Boppana SB, Ross SA (2019) Association of CMV genomic mutations with symptomatic infection and hearing loss in congenital CMV infection. BMC Infect Dis 19:1046–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bale JF Jr, Petheram SJ, Robertson M, Murph JR, Demmler G (2001) Human cytomegalovirus a sequence and UL144 variability in strains from infected children. J Med Virol 65:90–96

    Article  CAS  PubMed  Google Scholar 

  65. Bale JF, Zimmerman B, Dawson J, Souza I, Petheram B, Murph JR (1999) Cytomegalovirus transmission in child care homes. Arch Pediatr Adolesc Med 153:75–79

    Article  PubMed  Google Scholar 

  66. Chandler SH, McDougall JK (1986) Comparison of restriction site polymorphisms among clinical isolates and laboratory strains of human cytomegalovirus. J Gen Virol 67:2179–2192

    Article  CAS  PubMed  Google Scholar 

  67. Ishibashi K, Tokumoto T, Tanabe K, Shirakawa H, Hashimoto K, Kushida N, Yanagida T, Inoue O, Yamaguchi H, Toma T, Suzutami T (2007) Association of the outcome of renal transplantation with antibody response to cytomegalovirus strain-specific glycoprotein H epitopes. J Infect Dis 45:60–67

    CAS  Google Scholar 

  68. Yamamoto AY, Mussi-Pinhata MM, Boppana SB, Novak Z, Wagatsuma VM, Oliviera PD, Duarte G, Britt WJ (2010) Human cytomegalovirus reinfection is associated with intrauterine transmission in a highly cytomegalovirus-immune maternal population. Am J Obstet Gynecol 202:297.e291–297.e298

    Article  Google Scholar 

  69. Novak Z, Ross SA, Patro RK, Pati SK, Kumbla RA, Brice S, Boppana SB (2008) Cytomegalovirus strain diversity in seropositive women. J Clin Microbiol 46:882–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ross SA, Arora N, Novak Z, Fowler KB, Britt WJ, Boppana SB (2010) Cytomegalovirus reinfections in healthy seroimmune women. J Infect Dis 201:386–389

    Article  PubMed  Google Scholar 

  71. Boppana SB, Rivera LB, Fowler KB, Mach M, Britt WJ (2001) Intrauterine transmission of cytomegalovirus to infants of women with preconceptional immunity. N Engl J Med 344:1366–1371

    Article  CAS  PubMed  Google Scholar 

  72. Barbosa NG, Yamamoto AY, Duarte G, Aragon DC, Fowler KB, Boppana S, Britt WJ, Mussi-Pinhata MM (2018) Cytomegalovirus shedding in seropositive pregnant women from a high-seroprevalence population: the brazilian cytomegalovirus hearing and maternal secondary infection study. Clin Infect Dis 67:743–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rubin RH, Russell PS, Levin M, et, a. l. (1979) Summary of a workshop on cytomegalovirus infections during organ transplantation. J Infect Dis 139:728–734

    Article  CAS  PubMed  Google Scholar 

  74. Autran B, Carcelain G, Li TS, Blanc C, Mathez D, Tubiana R, Katlama C, Debre P, Leibowitch J (1997) Positive effects of combined antiretroviral therapy on CD4+ T cell homeostasis and function in advanced HIV disease. Science 277:112–116

    Article  CAS  PubMed  Google Scholar 

  75. Komanduri KV, Viswanathan MN, Wieder ED, Schmidt DK, Bredt BM, Jacobson M, McCune JM (1998) Restoration of cytomegalovirus-specific CD4+ T-lymphocyte responses after ganciclovir and highly active antiretroviral therapy in individuals infected with HIV-1. Nat Med 4:953–956

    Article  CAS  PubMed  Google Scholar 

  76. Bronke C, Palmer NM, Jansen CA, Westerlaken GH, Polstra AM, Reiss P, Bakker M, Miedema F, Tesselaar K, van Baarle D (2005) Dynamics of cytomegalovirus (CMV)-specific T cells in HIV-1-infected individuals progressing to AIDS with CMV end-organ disease. J Infect Dis 191:873–880

    Article  PubMed  Google Scholar 

  77. Gerna G, Lilleri D, Chiesa A, Zelini P, Furione M, Comolli G, Pellegrini C, Sarchi E, Migotto C, Bonora MR, Meloni F, Arbustini E (2011) Virologic and immunologic monitoring of cytomegalovirus to guide preemptive therapy in solid-organ transplantation. Am J Transplant 11:2463–2471

    Article  CAS  PubMed  Google Scholar 

  78. Gratama JW, van Esser JW, Lamers CH, Tournay C, Löwenberg B, Bolhuis RL, Cornelissen JJ (2001) Tetramer-based quantification of cytomegalovirus (CMV)-specific CD8+ T lymphocytes in T-cell-depleted stem cell grafts and after transplantation may identify patients at risk for progressive CMV infection. Blood 98:1358–1364

    Article  CAS  PubMed  Google Scholar 

  79. Lúcia M, Crespo E, Cruzado JM, Grinyó JM, Bestard O (2014) Human CMV-specific T-cell responses in kidney transplantation; toward changing current risk-stratification paradigm. Transpl Int 27:643–656

    Article  PubMed  CAS  Google Scholar 

  80. Ganepola S, Gentilini C, Hilbers U, Lange T, Rieger K, Hofmann J, Maier M, Liebert UG, Niederwieser D, Engelmann E, Heilbronn R, Thiel E, Uharek L (2007) Patients at high risk for CMV infection and disease show delayed CD8+ T-cell immune recovery after allogeneic stem cell transplantation. Bone Marrow Transplant 39:293–299

    Article  CAS  PubMed  Google Scholar 

  81. Reusser P, Riddell SR, Meyers JD, Greenberg PD (1991) Cytotoxic T-lymphocyte response to cytomegalovirus after human allogeneic bone marrow transplantation: pattern of recovery and correlation with cytomegalovirus infection and disease. Blood 78:1373–1380

    Article  CAS  PubMed  Google Scholar 

  82. Li CR, Greenberg PD, Gilbert MJ, Goodrich JM, Riddell SR (1994) Recovery of HLA-restricted cytomegalovirus (CMV)-specific T-cell responses after allogeneic bone marrow transplant: correlation with CMV disease and effect of ganciclovir prophylaxis. Blood 83:1971–1979

    Article  CAS  PubMed  Google Scholar 

  83. Egli A, Humar A, Kumar D (2012) State-of-the-art monitoring of cytomegalovirus-specific cell-mediated immunity after organ transplant: a primer for the clinician. Clin Infect Dis 55:1678–1689

    Article  PubMed  CAS  Google Scholar 

  84. Gabanti E, Lilleri D, Scaramuzzi L, Zelini P, Rampino T, Gerna G (2018) Comparison of the T-cell response to human cytomegalovirus (HCMV) as detected by cytokine flow cytometry and QuantiFERON-CMV assay in HCMV-seropositive kidney transplant recipients. New Microbiol 41:195–202

    CAS  PubMed  Google Scholar 

  85. Walter EA, Greenberg PD, Gilbert MJ, Finch RJ, Watanabe KS, Thomas ED, Riddell SR (1995) Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med 333:1038–1044

    Article  CAS  PubMed  Google Scholar 

  86. Biron CA, Byron KS, Sullivan JL (1989) Severe herpesvirus infections in an adolescent without natural killer cells. N Engl J Med 320:1731–1735

    Article  CAS  PubMed  Google Scholar 

  87. Starr SE, Tolpin MD, Friedman HM, Paucker K, Plotkin SA (1979) Impaired cellular immunity to cytomegalovirus in congenitally infected children and their mothers. J Infect Dis 140:500–505

    Article  CAS  PubMed  Google Scholar 

  88. Gehrz RC, Marker SC, Knorr SO, Kalis JM, Balfour HH Jr (1977) Specific cell-mediated immune defect in active cytomegalovirus infection of young children and their mothers. Lancet 2:844–847

    Article  CAS  PubMed  Google Scholar 

  89. Miles DJ, Sande M, Kaye S, Crozier S, Ojuola O, Palmero MS, Sanneh M, Touray ES, Waight P, Rowland-Jones S, Whittle H, Marchant A (2008) CD4(+) T cell responses to cytomegalovirus in early life: a prospective birth cohort study. J Infect Dis 197:658–662

    Article  PubMed  Google Scholar 

  90. Tu W, Chen S, Sharp M, Dekker C, Manganello AM, Tongson EC, Maecker HT, Holmes TH, Wang Z, Kemble G, Adler S, Arvin A, Lewis DB (2004) Persistent and selective deficiency of CD4+ T cell immunity to cytomegalovirus in immunocompetent young children. J Immunol 172:3260–3267

    Article  CAS  PubMed  Google Scholar 

  91. Marchant A, Appay V, Van Der Sande M, Dulphy N, Liesnard C, Kidd M, Kaye S, Ojuola O, Gillespie GM, Vargas Cuero AL, Cerundolo V, Callan M, McAdam KP, Rowland-Jones SL, Donner C, McMichael AJ, Whittle H (2003) Mature CD8(+) T lymphocyte response to viral infection during fetal life. J Clin Invest 111:1747–1755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Huygens A, Lecomte S, Tackoen M, Olislagers V, Delmarcelle Y, Burny W, Van Rysselberge M, Liesnard C, Larsen M, Appay V, Donner C, Marchant A (2015) Functional exhaustion limits CD4+ and CD8+ T-cell responses to congenital cytomegalovirus infection. J Infect Dis 212:484–494

    Article  CAS  PubMed  Google Scholar 

  93. Griffiths PD, Stagno S, Pass RF, Smith RJ, Alford CA (1982) Infection with cytomegalovirus during pregnancy: specific IgM antibodies as a marker of recent primary infection. J Infect Dis 145:647–653

    Article  CAS  PubMed  Google Scholar 

  94. Coppola T, Mangold JF, Cantrell S, Permar SR (2019) Impact of maternal immunity on congenital cytomegalovirus birth prevalence and infant outcomes: a systematic review. Vaccine 7:129

    Article  CAS  Google Scholar 

  95. Leruez-Ville M, Magny JF, Couderc S, Pichon C, Parodi M, Bussieres L, Guillminot T, Ghout I, Ville Y (2017) Risk factors for congenital cytomegalovirus infection following primary and nonprimary maternal infection: A prospective neonatal screening study using polymerase chain reaction in saliva. Clin Infect Dis 65(3):398–404

    Article  PubMed  Google Scholar 

  96. Britt WJ (2017) Congenital cytomegalovirus infection and the enigma of maternal immunity. J Virol 91:e02392–e02316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Brizić I, Lisnić B, Brune W, Hengel H, Jonjić S (2018) Cytomegalovirus infection: mouse model. Curr Protoc Immunol:e51

    Google Scholar 

  98. Britt WJ (2018) Maternal immunity and the natural history of congenital human cytomegalovirus infection. Viruses 10:405

    Article  PubMed Central  CAS  Google Scholar 

  99. Krmpotić A, Podlech J, Reddehase MJ, Britt WJ, Jonjić S (2019) Role of antibodies in confining cytomegalovirus after reactivation from latency: three decades’ résumé. Med Microbiol Immunol 208:415–429

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Mussi-Pinhata MM, Yamamoto AY, Aragon DC, Duarte G, Fowler KB, Boppana S, Britt WJ (2018) Seroconversion for cytomegalovirus infection during pregnancy and fetal infection in a highly seropositive population: "The BraCHS Study". J Infect Dis 218:1200–1204

    Article  PubMed  PubMed Central  Google Scholar 

  101. Dreher MA, Arora N, Fowler KB, Novak Z, Britt WJ, Boppana SB, Ross SA (2014) Spectrum of disease and outcome in children with symptomatic congenital cytomegalovirus infection. J Pediatr 164:855–859

    Article  PubMed  PubMed Central  Google Scholar 

  102. Tanimura K, Tairaku S, Ebina Y, Morioka I, Nagamata S, Deguchi K, Morizane M, Deguchi M, Minematsu T, Yamada H (2017) Prediction of congenital cytomegalovirus infection in high-risk pregnant women. Clin Infect Dis 64:159–165

    Article  CAS  PubMed  Google Scholar 

  103. Ahlfors K, Ivarsson SA, Harris S, Svanberg L, Holmqvist R, Lernmark B, Theander G (1984) Congenital cytomegalovirus infection and disease in Sweden and the relative importance of primary and secondary maternal infections. Scand J Infect Dis 16:129–137

    Article  CAS  PubMed  Google Scholar 

  104. Yeager AS (1983) Transmission of cytomegalovirus to mothers by infected infants: another reason to prevent transfusion-acquired infections. Pediatr Infect Dis 2:295

    Article  CAS  PubMed  Google Scholar 

  105. Bootz A, Karbach A, Spindler J, Kropff B, Reuter N, Sticht H, Winkler TH, Britt WJ, Mach M (2017) Protective capacity of neutralizing and non-neutralizing antibodies against glycoprotein B of cytomegalovirus. PLoS Pathog 13:e1006601

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Nelson CS, Cruz DV, Tran D, Bialas KM, Stamper L, Wu H, Gilbert M, Blair R, Alvarez X, Itell H, Chen M, Deshpande A, Chiuppesi F, Wussow F, Diamond DJ, Vandergrift N, Walter MR, Barry PA, Cohen-Wolkowiez M, Koelle K, Kaur A, Permar SR (2017) Preexisting antibodies can protect against congenital cytomegalovirus infection in monkeys. JCI Insight 2:e94002

    Article  PubMed Central  Google Scholar 

  107. Bravo FJ, Bourne N, Schleiss MR, Bernstein DI (2003) An animal model of neonatal cytomegalovirus infection. Antivir Res 60:41–49

    Article  CAS  PubMed  Google Scholar 

  108. Bratcher DF, Bourne N, Bravo FJ, Schleiss MR, Slaoui M, Myers MG, Bernstein DI (1995) Effect of passive antibody on congenital cytomegalovirus infection in guinea pigs. J Infect Dis 172:944–950

    Article  CAS  PubMed  Google Scholar 

  109. Farrell HE, Shellam GR (1991) Protection against murine cytomegalovirus infection by passive transfer of neutralizing and non-neutralizing monoclonal antibodies. J Gen Virol 72:149–156

    Article  CAS  PubMed  Google Scholar 

  110. Chatterjee A, Harrison CJ, Britt WJ, Bewtra C (2001) Modification of maternal and congenital cytomegalovirus infection by anti-glycoprotein b antibody transfer in guinea pigs. J Infect Dis 183:1547–1553

    Article  CAS  PubMed  Google Scholar 

  111. Alford CA, Hayes K, Britt WJ (1988) Primary cytomegalovirus infection in pregnancy: comparison of antibody responses to virus encoded proteins between women with and without intrauterine infection. J Infect Dis 158:917–924

    Article  CAS  PubMed  Google Scholar 

  112. Lilleri D, Kabanova A, Revello MG, Percivalle E, Sarasini A, Genini E, Sallusto F, Lanzavecchia A, Corti D, Gerna G (2013) Fetal human cytomegalovirus transmission correlates with delayed maternal antibodies to gH/gL/pUL128-130-131 complex during primary infection. PLoS One 8:e59863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Forner G, Saldan A, Mengoli C, Gussetti N, Palù G, Abate D (2016) Cytomegalovirus (CMV) enzyme-linked immunosorbent spot assay but not CMV QuantiFERON assay is a novel biomarker to determine risk of congenital CMV infection in pregnant women. J Clin Microbiol 54:2149–2154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Saldan A, Forner G, Mengoli C, Gussetti N, Palù G, Abate D (2015) Strong cell-mediated immune response to human cytomegalovirus is associated with increased risk of fetal infection in primarily infected pregnant women. Clin Infect Dis 61:1228–1234

    Article  CAS  PubMed  Google Scholar 

  115. Nigro G, Adler SP, La Torre R, Best AM (2005) Passive immunization during pregnancy for congenital cytomegalovirus infection. N Engl J Med 353:1350–1362

    Article  CAS  PubMed  Google Scholar 

  116. Visentin S, Manara R, Milanese L, Da Roit A, Forner G, Salviato E, Citton V, Magno FM, Orzan E, Morando C, Cusinato R, Mengoli C, Palu G, Ermani M, Rinalid R, Cosmi E, Gussetti N (2012) Early pregnancy cytomegalovirus infection in pregnancy: Maternal hyperimmunoglobulin therapy improves outcomes among infants at 1 year of age. Clin Infect Dis 55:497–503

    Article  CAS  PubMed  Google Scholar 

  117. Revello MG, Furione M, Rognoni V, Arossa A, Gerna G (2014) Cytomegalovirus DNAemia in pregnant women. J Clin Virol 61:590–592

    Article  CAS  PubMed  Google Scholar 

  118. Kagan KO, Enders M, Schampera MS, Baeumel E, Hoopmann M, Geipel A, Berg C, Goelz R, De Catte L, Wallwiener D, Brucker S, Adler SP, Jahn G, Hamprecht K (2019) Prevention of maternal-fetal transmission of cytomegalovirus after primary maternal infection in the first trimester by biweekly hyperimmunoglobulin administration. Ultrasound Obstet Gynecol 53:383–389

    Article  CAS  PubMed  Google Scholar 

  119. Maidji E, McDonagh S, Genbacev O, Tabata T, Pereira L (2006) Maternal antibodies enhance or prevent cytomegalovirus infection in the placenta by neonatal Fc receptor-mediated transcytosis. Am J Pathol 168:1210–1226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Pereira L, Maidji E, McDonagh S, Genbacev O, Fisher S (2003) Human cytomegalovirus transmission from the uterus to the placenta correlates with the presence of pathogenenic bacteria and maternal immunity. J Virol 77:13301–13314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Shimamura M, Mach M, Britt WJ (2006) Human cytomegalovirus infection elicits a glycoprotein M (gM)/gN-specific virus-neutralizing antibody response. J Virol 80:4591–4600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Macagno A, Bernasconi NL, Vanzetta F, Dander E, Sarasini A, Revello MG, Gerna G, Sallusto F, Lanzavecchia A (2010) Isolation of human monoclonal antibodies that potently neutralize human cytomegalovirus infection by targeting different epitopes on the gH/gL/UL128-131A complex. J Virol 84:1005–1013

    Article  CAS  PubMed  Google Scholar 

  123. Vanarsdall AL, Chin AL, Liu J, Jardetzky TS, Mudd JO, Orloff SL, Streblow D, Mussi-Pinhata MM, Yamamoto AY, Duarte G, Britt WJ, Johnson DC (2019) HCMV trimer- and pentamer-specific antibodies synergize for virus neutralization but do not correlate with congenital transmission. Proc Natl Acad Sci U S A 116:3728–3733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Britt WJ, Fay J, Kneiss N, Mach M (1990) An immunodominant linear epitope on the major envelope glcoprotein complex (gB) of human cytomegalovirus, In VIIIth International Congress of Virology, Berlin

    Google Scholar 

  125. Boppana SB, Britt WJ (1995) Antiviral antibody responses and intrauterine transmission after primary maternal cytomegalovirus infection. J Infect Dis 171:1115–1121

    Article  CAS  PubMed  Google Scholar 

  126. Saccoccio FM, Jenks JA, Itell HL, Li SH, Berry M, Pollara J, Casper C, Gantt S, Permar SR (2019) Humoral immune correlates for prevention of postnatal cytomegalovirus acquisition. J Infect Dis 220:772–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Nelson CS, Huffman T, Jenks JA, Cisneros de la Rosa E, Xie G, Vandergrift N, Pass RF, Pollara J, Permar SR (2018) HCMV glycoprotein B subunit vaccine efficacy mediated by nonneutralizing antibody effector functions. Proc Natl Acad Sci U S A 115:6267–6272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ross SA, Ahmed A, Palmer AL, Michaels MG, Sánchez PJ, Stewart A, Bernstein DI, Feja K, Fowler KB, Boppana SB (2017) Newborn dried blood spot polymerase chain reaction to identify infants with congenital cytomegalovirus-associated senfsorineural hearing loss. J Pediatr 184:57–61.e51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Vanarsdall AL, Ryckman BJ, Chase MC, Johnson DC (2008) Human cytomegalovirus glycoproteins gB and gH/gL mediate epithelial cell-cell fusion when expressed either in cis or in trans. J Virol 82:11837–11850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Vanarsdall AL, Howard PW, Wisner TW, Johnson DC (2016) Human cytomegalovirus gH/gL forms a stable complex with the fusion protein gB in virions. PLoS Pathog 12:e1005564

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Gerna G, Sarasini A, Patrone M, Percivalle E, Fiorina L, Campanini G, Gallina A, Baldanti F, Revello MG (2008) Human cytomegalovirus serum neutralizing antibodies block virus infection of endothelial/epithelial cells, but not fibroblasts, early during primary infection. J Gen Virol 89:853–865

    Article  CAS  PubMed  Google Scholar 

  132. Chiuppesi F, Wussow F, Johnson E, Bian C, Zhuo M, Rajakumar A, Barry PA, Britt WJ, Chakraborty R, Diamond DJ (2015) Vaccine-derived neutralizing antibodies to the human cytomegalovirus gH/gL pentamer potently block primary cytotrophoblast infection. J Virol 89:11884–11898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Gerna G, Percivalle E, Perez L, Lanzavecchia A, Lilleri D (2016) Monoclonal antibodies to different components of the human cytomegalovirus (HCMV) pentamer gH/gL/pUL128L and trimer gH/gL/gO as well as antibodies elicited during primary HCMV infection prevent epithelial cell syncytium formation. J Virol 90:6216–6223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Fouts AE, Chan P, Stephan JP, Vandlen R, Feirbach B (2012) Antibodies against the gH/gL/UL128/UL130/UL131 complex comprise the majority of the anti-cytomegalovirus (anti-CMV) neutralizing antibodie response in CMV hyperimmune globulin. J Virol 86:7444–7447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Lilleri D, Gerna G (2017) Maternal immune correlates of protection from human cytomegalovirus transmission to the fetus after primary infection in pregnancy. Rev Med Virol 27. https://doi.org/10.1002/rmv.1921

  136. Murrell I, Bedford C, Ladell K, Miners KL, Price DA, Tomasec P, Wilkinson GWG, Stanton RJ (2017) The pentameric complex drives immunologically covert cell-cell transmission of wild-type human cytomegalovirus. Proc Natl Acad Sci U S A 114:6104–6109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Jenks JA, Goodwin ML, Permar SR (2019) The roles of host and viral antibody Fc receptors in herpes simplex virus (HSV) and human cytomegalovirus (HCMV) infections and immunity. Front Immunol 10:1–9

    Article  CAS  Google Scholar 

  138. Lilleri D, Fornara C, Furione M, Zavattoni M, Revello MG, Gerna G (2007) Development of human cytomegalovirus-specific T cell immunity during primary infection of pregnant women and its correlation with virus transmission to the fetus. J Infect Dis 195:1062–1070

    Article  PubMed  Google Scholar 

  139. Dauby N, Kummert C, Lecomte S, Liesnard C, Delforge M-L, Donner C, Marchant A (2014) Primary human cytomegalovirus infection induces the expansion of virus-specific activated and atypical memory B cells. J Infect Dis 210:1275–1285

    Article  CAS  PubMed  Google Scholar 

  140. Dauby N, Sartori D, Kummert C, Lecomte S, Haelterman E, Delforge M-L, Donner C, Mach M, Marchant A (2016) Limited effector memory B-cell response to envelope Glycoprotein B during primary human cytomegalovirus infection. J Infect Dis 213:1642–1650

    Article  CAS  PubMed  Google Scholar 

  141. Zanghellini F, Boppana SB, Emery VC, Griffiths PD, Pass RF (1999) Asymptomatic primary cytomegalovirus infection: virologic and immunologic features. J Infect Dis 180:702–707

    Article  CAS  PubMed  Google Scholar 

  142. Baldanti F, Paolucci S, Campanini A, Sarasini A, Percivalle E, Revello MG, Gerna G (2006) Human cytomegalovirus UL131A, UL130, and UL128 genes are highly conserved among field isolates. Arch Virol 151:1225–1233

    Article  CAS  PubMed  Google Scholar 

  143. Fornara C, Cassaniti I, Zavattoni M, Furione M, Adzasehoun KMG, De Silvestri A, Comolli G, Baldanti F (2017) Human cytomegalovirus-specific memory CD4+ T-cell response and its correlation with virus transmission to the fetus in pregnant women with primary infection. Clin Infect Dis 65:1659–1665

    Article  CAS  PubMed  Google Scholar 

  144. Mele, F., Fornara, C., Jarrossay, D., Furione, M., Arossa, A., Spinillo, A., Lanzavecchia, A., Gerna, G., Sallusto, F., and Lilleri, D. (2017) Phenotype and specificity of T cells in primary human cytomegalovirus infection during pregnancy: IL-7Rpos long-term memory phenotype is associated with protection from vertical transmission, PLoS One 12, e0187731

    Google Scholar 

  145. Sester M, Sester U, Gartner B, Girndt M, Meyerhans A, Kohler H (2002) Dominance of virus-specific CD8 T cells in human primary cytomegalovirus infection. J Am Soc Nephrol 13:2577–2584

    Article  CAS  PubMed  Google Scholar 

  146. Gamadia LE, Remmerswaal EB, Weel JF, Bemelman F, van Lier RA, Ten Berge IJ (2003) Primary immune responses to human CMV: a critical role for IFN-gamma-producing CD4+ T cells in protection against CMV disease. Blood 101:2686–2692

    Article  CAS  PubMed  Google Scholar 

  147. Moss P, Khan N (2004) CD8(+) T-cell immunity to cytomegalovirus. Hum Immunol 65:456–464

    Article  CAS  PubMed  Google Scholar 

  148. Sylwester AW, Mitchell BL, Edgar JB, Taormina C, Pelte C, Ruchti F, Sleath PR, Grabstein KH, Hosken NA, Kern F, Nelson JA, Picker LJ (2005) Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J Exp Med 202:673–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Gyulai Z, Endresz V, Burian K, Pincus S, Toldy J, Cox WI, Meric C, Plotkin S, Gonczol E, Berencsci K (2000) Cytotoxic T lymphocyte (CTL) resposnes to human cytomegalovirus pp65, IE1-Exaon4, gB, pp150, and pp28 in healthy individuals: reevaluation of prevalence of IE1-specific CTSs. J Infect Dis 181:1537–1546

    Article  CAS  PubMed  Google Scholar 

  150. Atkins JT, Demmler GJ, Williamson WD, McDonald JM, Istas AS, Buffone GJ (1994) Polymerase chain reaction to detect cytomegalovirus DNA in the cerebrospinal fluid of neonates with congenital infection. J Infect Dis 169:1334–1337

    Article  CAS  Google Scholar 

  151. La Rosa C, Limaye AP, Krishnan A, Longmate J, Diamond DJ (2007) Longitudinal assessment of cytomegalovirus (CMV)-specific immune responses in liver transplant recipients at high risk for late CMV disease. J Infect Dis 195:633–644

    Article  PubMed  CAS  Google Scholar 

  152. Schooley RT, Hirsch MS, Colvin RB, Cosimi AB, Tolkoff-Rubin NE, McCluskey RT, Burton RC, Russell PS, Herrin JT, Delmonico FL, Giorgi JV, Henle W, Rubin RH (1983) Association of herpes virus infection with T-lymphocyte subset alterations, glomerulopathy, and opportunistic infections after renal transplantation. N Engl J Med 308:307–313

    Article  CAS  PubMed  Google Scholar 

  153. Sester M, Sester U, Gartner B, Heine G, Girndt M, Mueller-Lantzsch N, Meyerhans A, Kohler H (2001) Levels of virus-specific CD4 T cells correlate with cytomegalovirus control and predict virus-induced disease after renal transplantation. Transplantation 71:1287–1294

    Article  CAS  PubMed  Google Scholar 

  154. Reusser P, Cathomas G, Attenhofer R, Tamm M, Thiel G (1999) Cytomegalovirus (CMV)-specific T cell immunity after renal transplantation mediates protection from CMV disease by limiting the systemic virus load. J Infect Dis 180:247–253

    Article  CAS  PubMed  Google Scholar 

  155. Pourgheysari B, Piper KP, McLarnon A, Arrazi J, Bruton R, Clark F, Cook M, Mahendra P, Craddock C, Moss PA (2009) Early reconstitution of effector memory CD4+ CMV-specific T cells protects against CMV reactivation following allogeneic SCT. Bone Marrow Transplant 43:853–861

    Article  CAS  PubMed  Google Scholar 

  156. Razonable RR (2008) Cytomegalovirus infection after liver transplantation: current concepts and challenges. World J Gastroenterol 14:4849–4860

    Article  PubMed  PubMed Central  Google Scholar 

  157. Gallina A, Percivalle E, Simoncini L, Revello MG, Gerna G, Milanesi G (1996) Human cytomegalovirus protein pp65 lower matrix phosphoprotein harbours two transplantable nuclear localization signals. J Gen Virol 77:1151–1157

    Article  CAS  PubMed  Google Scholar 

  158. Gerna G, Lilleri D, Fornara C, Comolli G, Lozza L, Campana C, Pellegrini C, Meloni F, Rampino T (2006) Monitoring of human cytomegalovirus-specific CD4 and CD8 T-cell immunity in patients receiving solid organ transplantation. Am J Transplant 6:2356–2364

    Article  CAS  PubMed  Google Scholar 

  159. Lilleri D, Gerna G, Fornara C, Lozza L, Maccario R, Locatelli F (2006) Prospective simultaneous quantification of human cytomegalovirus-specific CD4+ and CD8+ T-cell reconstitution in young recipients of allogeneic hematopoietic stem cell transplants. Blood 108:1406–1412

    Article  CAS  PubMed  Google Scholar 

  160. Alford CA, Stagno S, Pass RF, Huang ES (1981) Epidemiology of cytomegalovirus. In: Nahmais A, Dowdle W, Schinazi R (eds) The human herpesviruses: an interdisciplinary perspective. Elsevier, New York, pp 159–171

    Google Scholar 

  161. Riddell SR, Greenberg PD (1994) Therapeutic reconstruction of human viral immunity by adoptive transfer of cytotoxic T lymphocyte clones. Curr Top Microbiol Immunol 189:9–34

    CAS  PubMed  Google Scholar 

  162. Riddell SR, Greenberg PD (2000) T-cell therapy of cytomegalovirus and human immunodeficiency virus infection. J Antimicrobl Chemother 45:35–43

    Article  CAS  Google Scholar 

  163. Boppana SB, Polis MA, Kramer AA, Britt WJ, Koenig S (1995) Virus specific antibody responses to human cytomegalovirus (HCMV) in human immunodeficiency virus type 1-infected individuals with HCMV retinitis. J Infect Dis 171:182–185

    Article  CAS  PubMed  Google Scholar 

  164. Dylewski J, Chou S, Merigan TC (1983) Absence of detectable IgM antibody during cytomegalovirus disease in patients with AIDS [letter]. N Engl J Med 309:493

    Article  CAS  PubMed  Google Scholar 

  165. Rasmussen L, Morris S, Wolitz R, Dowling A, Fessell J, Holodniy M, Merigan TC (1994) Deficiency in antibody response to human cytomegalovirus glycoprotein gH in human immunodeficiency virus-infected patients at risk for cytomegalovirus retinitis. J Infect Dis 170:673–677

    Article  CAS  PubMed  Google Scholar 

  166. Emery VC, Asher K, Sanjuan Cde J (2012) Importance of the cytomegalovirus seropositive recipient as a contributor to disease burden after solid organ transplantation. J Clin Virol 54:125–129

    Article  PubMed  PubMed Central  Google Scholar 

  167. Schachtner T, Stein M, Reinke P (2017) CMV-specific T cell monitoring offers superior risk stratification of CMV-seronegative kidney transplant recipients of a CMV-seropositive donor. Transplantation 101:e315–e325

    Article  PubMed  Google Scholar 

  168. Nesher L, Shah DP, Ariza-Heredia EJ, Azzi JM, Siddiqui HK, Ghantoji SS, Marsh LY, Michailidis L, Makedonas G, Rezvani K, Shpall EJ, Chemaly RF (2016) Utility of the enzyme-linked immunospot interferon-γ-release assay to predict the risk of cytomegalovirus infection in hematopoietic cell transplant recipients. J Infect Dis 213:1701–1707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Lee H, Park KH, Ryu JH, Choi A-R, Yu JH, Lim J, Han K, Kim SI, Yang CW, Chung BH, Oh E-J (2017) Cytomegalovirus (CMV) immune monitoring with ELISPOT and QuantiFERON-CMV assay in seropositive kidney transplant recipients. PLoS One 12:e0189488

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Lochmanova A, Lochman I, Tomaskova H, Marsalkova P, Raszka J, Mrazek J, Dedochova J, Martinek A, Brozmanova H, Grundmann M (2010) Quantiferon-CMV test in prediction of cytomegalovirus infection after kidney transplantation. Transplant Proc 42:3574–3577

    Article  CAS  PubMed  Google Scholar 

  171. Chiereghin A, Potena L, Borgese L, Gibertoni D, Squarzoni D, Turello G, Petrisli E, Piccirilli G, Gabrielli L, Grigioni F, Lazzarotto T (2018) Monitoring of cytomegalovirus (CMV)-specific cell-mediated immunity in heart transplant recipients: clinical utility of the QuantiFERON-CMV assay for management of posttransplant cmv infection. J Clin Microbiol 56:e01040–e01017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Favi E, Santangelo R, Iesari S, Morandi M, Marcovecchio GE, Trecarichi EM, Salerno MP, Ferraresso M, Citterio F, Romagnoli J (2017) Enzyme-linked immunospot assay as a complementary method to assess and monitor cytomegalovirus infection in kidney transplant recipients on pre-emptive antiviral therapy: a single-center experience. Transplant Proc 49:1766–1772

    Article  CAS  PubMed  Google Scholar 

  173. Kumar D, Mian M, Singer L, Humar A (2017) An interventional study using cell-mediated immunity to personalize therapy for cytomegalovirus infection after transplantation. Am J Transplant 17:2468–2473

    Article  CAS  PubMed  Google Scholar 

  174. Manuel O (2013) Clinical experience with immune monitoring for cytomegalovirus in solid-organ transplant recipients. Curr Infect Dis Rep

    Google Scholar 

  175. Krawczyk A, Ackermann J, Goitowski B, Trenschel R, Ditschkowski M, Timm J, Ottinger H, Beelen DW, Grüner N, Fiedler M (2018) Assessing the risk of CMV reactivation and reconstitution of antiviral immune response post bone marrow transplantation by the QuantiFERON-CMV-assay and real time PCR. J Clin Virol 99–100:61–66

    Article  PubMed  CAS  Google Scholar 

  176. Panagou E, Zakout G, Keshani J, Smith C, Irish D, Mackinnon S, Kottaridis P, Fielding A, Griffiths PD (2016) Cytomegalovirus pre-emptive therapy after hematopoietic stem cell transplantation in the era of real-time quantitative PCR: comparison with recipients of solid organ transplants. Transpl Infect Dis 18:405–414

    Article  CAS  PubMed  Google Scholar 

  177. Pergam SA, Xie H, Sandhu R, Pollack M, Smith J, Stevens-Ayers T, Ilieva V, Kimball LE, Huang M-L, Hayes TS, Corey L, Boeckh MJ (2012) Efficiency and risk factors for CMV transmission in seronegative hematopoietic stem cell recipients. Biol Blood Marrow Transplant 18:1391–1400

    Article  PubMed  PubMed Central  Google Scholar 

  178. Raanani P, Gafter-Gvili A, Paul M, Ben-Bassat I, Leibovici L, Shpilberg O (2008) Immunoglobulin prophylaxis in hematological malignancies and hematopoietic stem cell transplantation. Cochrane Database Syst Rev 4:CD006501

    Google Scholar 

  179. Raanani P, Gafter-Gvili A, Paul M, Ben-Bassat I, Leibovici L, Shpilberg O (2009) Immunoglobulin prophylaxis in hematopoietic stem cell transplantation: systematic review and meta-analysis. J Clin Oncol 27:770–781

    Article  CAS  PubMed  Google Scholar 

  180. Slade M, Goldsmith S, Romee R, DiPersio JF, Dubberke ER, Westervelt P, Uy GL, Lawrence SJ (2017) Epidemiology of infections following haploidentical peripheral blood hematopoietic cell transplantation. Transpl Infect Dis 19:e12629. https://doi.org/10.1111/tid.12629

    Article  CAS  Google Scholar 

  181. Crocchiolo R, Bramanti S, Vai A, Sarina B, Mineri R, Casari E, Tordato F, Mauro E, Timofeeva I, Lugli E, Mavilio D, Carlo-Stella C, Santoro A, Castagna L (2015) Infections after T-replete haploidentical transplantation and high-dose cyclophosphamide as graft-versus-host disease prophylaxis. Transpl Infect Dis 17:242–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Marek A, Stern M, Chalandon Y, Ansari M, Ozsahin H, Güngör T, Gerber B, Kühne T, Passweg JR, Gratwohl A, Tichelli A, Seger R, Schanz U, Halter J, Stussi G, Swiss Blood Stem Cell, T (2014) The impact of T-cell depletion techniques on the outcome after haploidentical hematopoietic SCT. Bone Marrow Transplant 49:55–61

    Article  CAS  PubMed  Google Scholar 

  183. Mulanovich VE, Jiang Y, de Lima M, Shpall EJ, Champlin RE, Ciurea SO (2011) Infectious complications in cord blood and T-cell depleted haploidentical stem cell transplantation. Am J Blood Res 1:98–105

    PubMed  PubMed Central  Google Scholar 

  184. Marty FM, Ljungman P, Chemaly RF, Maertens J, Dadwal SS, Duarte RF, Haider S, Ullmann AJ, Katayama Y, Brown J, Mullane KM, Boeckh M, Blumberg EA, Einsele H, Snydman DR, Kanda Y, DiNubile MJ, Teal VL, Wan H, Murata Y, Kartsonis NA, Leavitt RY, Badshah C (2017) Letermovir prophylaxis for cytomegalovirus in hematopoietic-cell transplantation. N Engl J Med 377:2433–2444

    Article  CAS  PubMed  Google Scholar 

  185. Roddie C, Peggs KS (2017) Immunotherapy for transplantation-associated viral infections. J Clin Invest 127:2513–2522

    Article  PubMed  PubMed Central  Google Scholar 

  186. Pass RF, Griffiths PD, August AM (1983) Antibody response to cytomegalovirus after renal transplantation: comparison of patients with primary and recurrent infection. J Infect Dis 147:40–46

    Article  CAS  PubMed  Google Scholar 

  187. Kropff B, Landini MP, Mach M (1993) An ELISA using recombinant proteins for the detection of neutralizing antibodies against human cytomegalovirus. J Med Virol 39:187–195

    Article  CAS  PubMed  Google Scholar 

  188. Falagas ME, Snydman DR, Ruthazer R, Werner BG, Griffith J (1997) Surveillance cultures of blood, urine, and throat specimens are not valuable for predicting cytomegalovirus disease in liver transplant recipients. Boston Center for Liver Transplantation Cytomegalovirus Immune Globulin Study Group. Clin Infect Dis 24:824–829

    Article  CAS  PubMed  Google Scholar 

  189. Snydman DR (1990) Cytomegalovirus immunoglobulins in the prevention and treatment of cytomegalovirus disease. Rev Infect Dis 12(S):839–848

    Article  Google Scholar 

  190. Snydman DR, Werner BG, Heinze-Lacey B, Berardi VP, Tilney NL, Kirkman RL, Milford EL, Cho SI, Bush HL, Levey AS, Strom TB, Carpenter CE, Levey RH, Harmon WE, Zimmerman CE, Shaprio ME, Steinman T, LoGerfo F, Idelson B, Schroter GPJ, Levin MJ, McIver J, Leszczynski J, Grady GF (1987) Use of cytomegalovirus immune globulin to prevent cytomegalovirus disease in renal transplant recipients. N Engl J Med 317:1049–1054

    Article  CAS  PubMed  Google Scholar 

  191. Rea F, Potena L, Yonan N, Wagner F, Calabrese F (2016) Cytomegalovirus hyper immunoglobulin for CMV prophylaxis in thoracic transplantation. Transplantation 100(Suppl 3):S19–S26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Grossi P, Mohacsi P, Szabolcs Z, Potena L (2016) Cytomegalovirus immunoglobulin after thoracic transplantation: an overview. Transplantation 100(Suppl 3):S1–S4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Schulz U, Solidoro P, Müller V, Szabo A, Gottlieb J, Wilkens H, Enseleit F (2016) CMV Immunoglobulins for the treatment of CMV infections in thoracic transplant recipients. Transplantation 100(Suppl 3):S5–S10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Garcia-Gallo CL, Gil PU, Laporta R, Carreño MC, de Pablo A, Ferreiro MJ (2005) Is gammaglobulin anti-CMV warranted in lung transplantation? Transplant Proc 37:4043–4045

    Article  CAS  PubMed  Google Scholar 

  195. Ranganathan K, Worley S, Michaels MG, Arrigan S, Aurora P, Ballmann M, Boyer D, Conrad C, Eichler I, Elidemir O, Goldfarb S, Mallory GB Jr, Mogayzel PJ, Parakininkas D, Solomon M, Visner G, Sweet SC, Faro A, Danziger-Isakov L (2009) Cytomegalovirus immunoglobulin decreases the risk of cytomegalovirus infection but not disease after pediatric lung transplantation. J Heart Lung Transplant 28:1050–1056

    Article  PubMed  PubMed Central  Google Scholar 

  196. Valantine HA, Luikart H, Doyle R, Theodore J, Hunt S, Oyer P, Robbins R, Berry G, Reitz B (2001) Impact of cytomegalovirus hyperimmune globulin on outcome after cardiothoracic transplantation: a comparative study of combined prophylaxis with CMV hyperimmune globulin plus ganciclovir versus ganciclovir alone. Transplantation 72:1647–1652

    Article  CAS  PubMed  Google Scholar 

  197. Ljungman P, Cordonnier C, Einsele H, Bender-Götze C, Bosi A, Dekker A, De la Camara R, Gmür J, Newland AC, Prentice HG, Robinson AJ, Rovira M, Rösler W, Veil D (1998) Use of intravenous immune globulin in addition to antiviral therapy in the treatment of CMV gastrointestinal disease in allogeneic bone marrow transplant patients: a report from the European Group for Blood and Marrow Transplantation (EBMT). Infectious Diseases Working Party of the EBMT. Bone Marrow Transplant 21:473–476

    Article  CAS  PubMed  Google Scholar 

  198. Winston DJ, Ho WG, Bartoni K, Champlin RE (1993) Intravenous immunoglobulin and CMV-seronegative blood products for prevention of CMV infection and disease in bone marrow transplant recipients. Bone Marrow Transplant 12:283–288

    CAS  PubMed  Google Scholar 

  199. Ahn H, Tay J, Shea B, Hutton B, Shorr R, Knoll GA, Cameron DW, Cowan J (2018) Effectiveness of immunoglobulin prophylaxis in reducing clinical complications of hematopoietic stem cell transplantation: a systematic review and meta-analysis. Transfusion 58:2437–2452

    Article  PubMed  Google Scholar 

  200. Abdel-Azim H, Elshoury A, Mahadeo KM, Parkman R, Kapoor N (2017) Humoral immune reconstitution kinetics after allogeneic hematopoietic stem cell transplantation in children: a maturation block of IgM Memory B cells may lead to impaired antibody immune reconstitution. Biology Blood Marrow Transplant 23:1437–1446

    Article  CAS  Google Scholar 

  201. Bourassa-Blanchette S, Knoll GA, Hutton B, Fergusson N, Bennett A, Tay J, Cameron DW, Cowan J (2019) Clinical outcomes of polyvalent immunoglobulin use in solid organ transplant recipients: A systematic review and meta-analysis. Clin Transpl 33:e13560

    Google Scholar 

  202. D’Orsogna LJ, Wright MP, Krueger RG, McKinnon EJ, Buffery SI, Witt CS, Staples N, Loh R, Cannell PK, Christiansen FT, French MA (2009) Allogeneic hematopoietic stem cell transplantation recipients have defects of both switched and igm memory B cells. Biol Blood Marrow Transplant 15:795–803

    Article  PubMed  CAS  Google Scholar 

  203. Heimall J, Puck J, Buckley R, Fleisher TA, Gennery AR, Neven B, Slatter M, Haddad E, Notarangelo LD, Baker KS, Dietz AC, Duncan C, Pulsipher MA, Cowan MJ (2017) Current knowledge and priorities for future research in late effects after hematopoietic stem cell transplantation (HCT) for severe combined immunodeficiency patients: a consensus statement from the second pediatric blood and marrow transplant consortium International Conference on Late Effects after Pediatric HCT. Biol Blood Marrow Transplant 23:379–387

    Article  PubMed  PubMed Central  Google Scholar 

  204. Boeckh M, Bowden RA, Storer B, Chao NJ, Spielberger R, Tierney DK, Gallez-Hawkins G, Cunningham T, Blume KG, Levitt D, Zaia JA (2001) Randomized, placebo-controlled, double-blind study of a cytomegalovirus-specific monoclonal antibody (MSL-109) for prevention of cytomegalovirus infection after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 7:343–351

    Article  CAS  PubMed  Google Scholar 

  205. Anonymous (1997) MSL-109 adjuvant therapy for cytomegalovirus retinitis in patients with acquired immunodeficiency syndrome: the Monoclonal Antibody Cytomegalovirus Retinitis Trial. The Studies of Ocular Complications of AIDS Research Group. AIDS Clinical Trials Group. Arch Ophthalmol 115:1528–1536

    Article  Google Scholar 

  206. Ishida JH, Patel A, Mehta AK, Gatault P, McBride JM, Burgess T, Derby MA, Snydman DR, Emu B, Feierbach B, Fouts AE, Maia M, Deng R, Rosenberger CM, Gennaro LA, Striano NS, Liao XC, Tavel JA (2017) Phase 2 randomized, double-blind, placebo-controlled trial of RG7667, a combination monoclonal antibody, for prevention of cytomegalovirus infection in high-risk kidney transplant recipients. Antimicrob Agents Chemother 61:e01794–e01716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Schleiss MR (2006) Nonprimate models of congenital cytomegalovirus (CMV) infection: gaining insight into pathogenesis and prevention of disease in newborns. ILAR J 47:65–72

    Article  CAS  PubMed  Google Scholar 

  208. Britt WJ, Boppana S (2004) Human cytomegalviurs virion proteins. Hum Immunol 65:395–402

    Article  CAS  PubMed  Google Scholar 

  209. Itell HL, Nelson CS, Martinez DR, Permar SR (2017) Maternal immune correlates of protection against placental transmission of cytomegalovirus. Placenta 60(Suppl 1):S73–S79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Reddehase MJ, Lemmermann NAW (2018) Mouse model of cytomegalovirus disease and immunotherapy in the immunocompromised host: predictions for medical translation that survived the "Test of Time". Viruses 10:693

    Article  CAS  PubMed Central  Google Scholar 

  211. Jonjic S, Babic M, Polic B, Krmpotic A (2008) Immune evasion of natural killer cells by viruses. Curr Opin Immunol 20:30–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Jonjic S, Pavic I, Lucin P, Rukavina D, Koszinowski UH (1990) Efficacious control of cytomegalovirus infection after long-term depletion of CD8+ T lymphocytes. J Virol 64:5457–5464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Jonjic S, Pavic I, Polic B, Crnkovic I, Lucin P, Koszinowski UH (1994) Antibodies are not essential for the resolution of primary cytomegalovirus infection but limit dissemination of recurrent virus. J Exp Med 179:1713–1717

    Article  CAS  PubMed  Google Scholar 

  214. Koszinowski UH, Reddehase MJ, Jonjic S (1991) The role of CD4 and CD8 T cells in viral infections. Curr Opin Immunol 3:471–475

    Article  CAS  PubMed  Google Scholar 

  215. Koszinowski UH, Reddehase MJ, Keil GM, Volkmer H, Jonjic S, Messerle M, del Val M, Mutter W, Munch K, Buhler B (1987) Molecular analysis of herpesviral gene products recognized by protective cytolytic T lymphocytes. Immunol Lett 16:185–192

    Article  CAS  PubMed  Google Scholar 

  216. Krmpotic A, Bubic I, Polic B, Lucin P, Jonjic S (2003) Pathogenesis of murine cytomegalovirus infection. Microbes Infect 5:1263–1277

    Article  CAS  PubMed  Google Scholar 

  217. Polic B, Hengel H, Krmpotic A, Trgovcich J, Pavic I, Luccaronin P, Jonjic S, Koszinowski UH (1998) Hierarchical and redundant lymphocyte subset control precludes cytomegalovirus replication during latent infection. J Exp Med 188:1047–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Shanley JD (1991) Murine models of cytomegalovirus associated pneumonitis. Transplant Proc 23:S12–S16

    Google Scholar 

  219. Shanley JD, Biczak L, Formon SJ (1993) Acute murine cytomegalovirus infection induces lethal hepatitis. J Infect Dis 167:264–269

    Article  CAS  PubMed  Google Scholar 

  220. Koszinowski UH, Del Val M, Reddehase MJ (1990) Cellular and molecular basis of the protective immune response to cytomegalovirus infection. Curr Top Microbiol Immuno 154:189–220

    CAS  Google Scholar 

  221. Martins JP, Andoniou CE, Fleming P, Kuns RD, Schuster IS, Voigt V, Daly S, Varelias A, Tey S-K, Degli-Esposti MA, Hill GR (2019) Strain-specific antibody therapy prevents cytomegalovirus reactivation after transplantation. Science 363:288–293

    Article  CAS  PubMed  Google Scholar 

  222. Alcami A, Koszinowski UH (2000) Viral mechanisms of immune evasion. Immunol Today 21:447–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Krmpotic A, Hasan M, Loewendorf A, Saulig T, Halenius A, Lenac T, Polic B, Bubic I, Kriegeskorte A, Pernjak-Pugel E, Messerle M, Hengel H, Busch DH, Koszinowski UH, Jonjic S (2005) NK cell activation through the NKG2D ligand MULT-1 is selectively prevented by the glycoprotein encoded by mouse cytomegalovirus gene m145. J Exp Med 201:211–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Zimmermann A, Trilling M, Wagner M, Wilborn M, Bubic I, Jonjic S, Koszinowski U, Hengel H (2005) A cytomegaloviral protein reveals a dual role for STAT2 in IFN-{gamma} signaling and antiviral responses. J Exp Med 201:1543–1553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. LoPiccolo DM, Gold MC, Kavanagh DG, Wagner M, Koszinowski UH, Hill AB (2003) Effective inhibition of K(b)- and D(b)-restricted antigen presentation in primary macrophages by murine cytomegalovirus. J Virol 77:301–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Lenac T, Budt M, Arapovic J, Hasan M, Zimmermann A, Simic H, Krmpotic A, Messerle M, Ruzsics Z, Koszinowski UH, Hengel H, Jonjic S (2006) The herpesviral Fc receptor fcr-1 down-regulates the NKG2D ligands MULT-1 and H60. J Exp Med 203:1843–1850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Krmpotic A, Messerle M, Crnkovic-Mertens I, Polic B, Jonjic S, Koszinowski UH (2001) The immunoevasive function encoded by the mouse cytomegalovirus gene m152 protects the virus against T cell control in vivo. J Exp Med 190:1285–1296

    Article  Google Scholar 

  228. Krmpotic A, Busch DH, Bubic I, Gebhardt F, Hengel H, Hasan M, Scalzo AA, Koszinowski UH, Jonjic S (2002) MCMV glycoprotein gp40 confers virus resistance to CD8+ T cells and NK cells in vivo. Nat Immunol 3:529–535

    Article  CAS  PubMed  Google Scholar 

  229. Kavanagh DG, Gold MC, Wagner M, Koszinowski UH, Hill AB (2001) The multiple immune-evasion genes of murine cytomegalovirus are not redundant: m4 and m152 inhibit antigen presentation in a complementary and cooperative fashion. J Exp Med 194:967–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Hasan M, Krmpotic A, Ruzsics Z, Bubic I, Lenac T, Halenius A, Loewendorf A, Messerle M, Hengel H, Jonjic S, Koszinowski UH (2005) Selective down-regulation of the NKG2D ligand H60 by mouse cytomegalovirus m155 glycoprotein. J Virol 79:2920–2930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Hengel H, Reusch U, Gutermann A, Ziegler H, Jonjic S, Lucin P, Koszinowski UH (1999) Cytomegaloviral control of MHC class I function in the mouse. Immunol Rev 168:167–176

    Article  CAS  PubMed  Google Scholar 

  232. Smith HR, Heusel JW, Mehta IK, Kim S, Dorner BG, Naidenko OV, Iizuka K, Furukawa H, Beckman DL, Pingel JT, Scalzo AA, Fremont DH, Yokoyama WM (2002) Recognition of a virus-encoded ligand by a natural killer cell activation receptor. Proc Natl Acad Sci U S A 99:8826–8831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Upton JW, Kaiser WJ, Mocarski ES (2010) Virus inhibition of RIP3-dependent necrosis. Cell Host Microbe 7:302–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Lisnic VJ, Krmpotic A, Jonjic S (2010) Modulation of natural killer cell activity by viruses. Curr Opin Microbiol 13(4):530–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Handke W, Luig C, Popovic B, Krmpotic A, Jonjic S, Brune W (2013) Viral inhibition of BAK promotes murine cytomegalovirus dissemination to salivary glands. J Virol 87:3592–3596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Brune W, Andoniou CE (2017) Die another day: inhibition of cell death pathways by cytomegalovirus. Viruses 9:249

    Article  PubMed Central  CAS  Google Scholar 

  237. Lio C-WJ, McDonald B, Takahashi M, Dhanwani R, Sharma N, Huang J, Pham E, Benedict CA, Sharma S (2016) cGAS-STING signaling regulates initial innate control of cytomegalovirus infection. J Virol 90:7789–7797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Deutschmann J, Schneider A, Gruska I, Vetter B, Thomas D, Kießling M, Wittmann S, Herrmann A, Schindler M, Milbradt J, Ferreirós N, Winkler TH, Wiebusch L, Gramberg T (2019) A viral kinase counteracts in vivo restriction of murine cytomegalovirus by SAMHD1. Nat Microbiol 4:2273–2284

    Article  PubMed  CAS  Google Scholar 

  239. Stempel M, Chan B, Juranić Lisnić V, Krmpotić A, Hartung J, Paludan SR, Füllbrunn N, Lemmermann NAW, Brinkmann MM (2019) The herpesviral antagonist m152 reveals differential activation of STING-dependent IRF and NF-κB signaling and STING’s dual role during MCMV infection. EMBO J 38:e100983

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  240. Feng L, Sheng J, Vu G-P, Liu Y, Foo C, Wu S, Trang P, Paliza-Carre M, Ran Y, Yang X, Sun X, Deng Z, Zhou T, Lu S, Li H, Liu F (2018) Human cytomegalovirus UL23 inhibits transcription of interferon-γ stimulated genes and blocks antiviral interferon-γ responses by interacting with human N-myc interactor protein. PLoS Pathog 14:e1006867

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  241. Daley-Bauer LP, Roback L, Crosby LN, McCormick AL, Feng Y, Kaiser WJ, Mocarski ES (2017) Mouse cytomegalovirus M36 and M45 death suppressors cooperate to prevent inflammation resulting from antiviral programmed cell death pathways. Proc Natl Acad Sci 114:E2786–E2795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Kaiser WJ, Upton JW, Mocarski ES (2013) Viral modulation of programmed necrosis. Curr Opin Virol 3:296–306

    Article  CAS  PubMed  Google Scholar 

  243. Železnjak J, Lisnić VJ, Popović B, Lisnić B, Babić M, Halenius A, L’Hernault A, Roviš TL, Hengel H, Erhard F, Redwood AJ, Vidal SM, Dölken L, Krmpotić A, Jonjić S (2019) The complex of MCMV proteins and MHC class I evades NK cell control and drives the evolution of virus-specific activating Ly49 receptors. J Exp Med 216:1809–1827

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  244. Humphreys IR, de Trez C, Kinkade A, Benedict CA, Croft M, Ware CF (2007) Cytomegalovirus exploits IL-10-mediated immune regulation in the salivary glands. J Exp Med 204:1217–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Reddehase MJ, Balthesen M, Rapp M, Jonjic S, Pavic I, Koszinowski UH (1994) The conditions of primary infection define the load of latent viral genome in organs and the risk of recurrent cytomegalovirus disease. J Exp Med 179:185–193

    Article  CAS  PubMed  Google Scholar 

  246. Mathys S, Schroeder T, Ellwart J, Koszinowski UH, Messerle M, Just U (2003) Dendritic cells under influence of mouse cytomegalovirus have a physiologic dual role: to initiate and to restrict T cell activation. J Infect Dis 187:988–999

    Article  PubMed  Google Scholar 

  247. Spencer JV, Lockridge KM, Barry PA, Lin G, Tsang M, Penfold ME, Schall TJ (2002) Potent immunosuppressive activities of cytomegalovirus-encoded interleukin-10. J Virol 76:1285–1292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Chang WL, Barry PA (2009) Attenuation of innate immunity by cytomegalovirus IL-10 establishes a long-term deficit of adaptive antiviral immunity. Proc Natl Acad Sci U S A 107:22647–22652

    Article  Google Scholar 

  249. Mandaric S, Walton SM, Rulicke T, Richter K, Girard-Madoux MJ, Clausen BE, Zurunic A, Kamanaka M, Flavell RA, Jonjic S, Oxenius A (2012) IL-10 suppression of NK/DC crosstalk leads to poor priming of MCMV-specific CD4 T cells and prolonged MCMV persistence. PLoS Pathog 8:e1002846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Scalzo AA, Corbett AJ, Rawlinson WD, Scott GM, Degli-Esposti MA, Pyzik M, Gendron-Pontbriand EM, Fodil-Cornu N, Vidal SM, Lemmermann NA, Bohm V, Holtappels R, Reddehase MJ, Babic M, Krmpotic A, Jonjic S, Engel P, Angulo A (2007) The interplay between host and viral factors in shaping the outcome of cytomegalovirus infection. Immunol Cell Biol 85:46–54

    Article  CAS  PubMed  Google Scholar 

  251. Deere JD, Chang WLW, Villalobos A, Schmidt KA, Deshpande A, Castillo LD, Fike J, Walter MR, Barry PA, Hartigan-O’Connor DJ (2019) Neutralization of rhesus cytomegalovirus IL-10 reduces horizontal transmission and alters long-term immunity. Proc Natl Acad Sci U S A 116:13036–13041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Geary CD, Sun JC (2017) Memory responses of natural killer cells. Semin Immunol 31:11–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. O’Sullivan TE, Sun JC (2015) Generation of natural killer cell memory during viral infection. J Innate Immun 7:557–562

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  254. Scalzo AA, Yokoyama WM (2008) Cmv1 and natural killer cell responses to murine cytomegalovirus infection. Curr Top Microbiol Immunol 321:101–122

    CAS  PubMed  Google Scholar 

  255. Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, Yokoyama WM, Ugolini S (2011) Innate or adaptive immunity? The example of natural killer cells. Science 331:44–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Rapp M, Messerle M, Lucin P, Koszinowski UH (1993) In vivo protection studies with MCMV glycoproteins gB and gH expressed by vaccinia virus. In: Michelson S, Plotkin SA (eds) Multidisciplinary approach to understanding cytomegalovirus disease. Excerpta Medica, Amsterdam, pp 327–332

    Google Scholar 

  257. Reddehase MJ, Mutter W, Munch K, Buhring HJ, Koszinowski UH (1987) CD8-positive T lymphocytes specific for murine cytomegalovirus immediate-early antigens mediate protective immunity. J Virol 61:3102–3108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Del Val M, Schlicht HJ, Volkmer H, Messerle M, Reddehase MJ, Koszinowski UH (1991) Protection against lethal cytomegalovirus infection by a recombinant vaccine containing a single nonameric T-cell epitope. J Virol 65:3641–3646

    Article  PubMed  PubMed Central  Google Scholar 

  259. Mohr CA, Arapovic J, Muhlbach H, Panzer M, Weyn A, Dolken L, Krompotic A, Voehringer D, Ruzsics Z, Koszinowski U, Sacher T (2010) A spread-deficient cytomegalovirus for assessment of first-target cells in vaccination. J Virol 84:7730–7742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Schlub TE, Sun JC, Walton SM, Robbins SH, Pinto AK, Munks MW, Hill AB, Brossay L, Oxenius A, Davenport MP (2011) Comparing the kinetics of NK cells, CD4, and CD8 T cells in murine cytomegalovirus infection. J Immunol 187:1385–1392

    Article  CAS  PubMed  Google Scholar 

  261. Gonzalez Armas JC, Morello CS, Cranmer LD, Spector DH (1996) DNA immunization confers protection against murine cytomegalovirus infection. J Virol 70:7921–7928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Morello CS, Cranmer LD, Spector DH (2000) Suppression of murine cytomegalovirus (MCMV) replication with a DNA vaccine encoding MCMV M84 (a homolog of human cytomegalovirus pp65). J Virol 74:3696–3708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Hakki M, Riddell SR, Storek J, Carter RA, Stevens-Ayers T, Sudour P, White K, Corey L, Boeckh M (2003) Immune reconstitution to cytomegalovirus after allogeneic hematopoietic stem cell transplantation: impact of host factors, drug therapy, and subclinical reactivation. Blood 102:3060–3067

    Article  CAS  PubMed  Google Scholar 

  264. Slavuljica I, Busche A, Babic M, Mitrovic M, Gasparovic I, Cekinovic D, Markova Car E, Pernjak Pugel E, Cikovic A, Lisnic VJ, Britt WJ, Koszinowski U, Messerle M, Krmpotic A, Jonjic S (2010) Recombinant mouse cytomegalovirus expressing a ligand for the NKG2D receptor is attenuated and has improved vaccine properties. J Clin Invest 120:4532–4545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Cekinovic D, Golemac M, Pugel EP, Tomac J, Cicin-Sain L, Slavuljica I, Bradford R, Misch S, Winkler TH, Mach M, Britt WJ, Jonjic S (2008) Passive immunization reduces murine cytomegalovirus-induced brain pathology in newborn mice. J Virol 82:12172–12180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Klenovsek K, Weisel F, Schneider A, Appelt U, Jonjic S, Messerle M, Bradel-Tretheway B, Winkler TH, Mach M (2007) Protection from CMV infection in immunodeficient hosts by adoptive transfer of memory B cells. Blood 110:3472–3479

    Article  CAS  PubMed  Google Scholar 

  267. Farroway LN, Gorman S, Lawson MA, Harvey NL, Jones DA, Shellam GR, Singleton GR (2005) Transmission of two Australian strains of murine cytomegalovirus (MCMV) in enclosure populations of house mice (Mus domesticus). Epidemiol Infect 133:701–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Gorman S, Harvey NL, Moro D, Lloyd ML, Voigt V, Smith LM, Lawson MA, Shellam GR (2006) Mixed infection with multiple strains of murine cytomegalovirus occurs following simultaneous or sequential infection of immunocompetent mice. J Gen Virol 87:1123–1132

    Article  CAS  PubMed  Google Scholar 

  269. Barry PA, Lockridge KM, Salamat S, Tinling SP, Yue Y, Zhou SS, Gospe SM Jr, Britt WJ, Tarantal AF (2006) Nonhuman primate models of intrauterine cytomegalovirus infection. ILAR J 47:49–64

    Article  CAS  PubMed  Google Scholar 

  270. Assaf BT, Mansfield KG, Westmoreland SV, Kaur A, Oxford KL, Diamond DJ, Barry PA (2012) Patterns of acute rhesus cytomegalovirus (RhCMV) infection predict long-term RhCMV infection. J Virol 86:6354–6357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Lockridge KM, Sequar G, Zhou SS, Yue Y, Mandell CP, Barry PA (1999) Pathogenesis of experimental rhesus cytomegalovirus infection. J Virol 73:9576–9583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Kaur A, Daniel MD, Hempel D, Lee-Parritz D, Hirsch MS, Johnson RP (1996) Cytotoxic T-lymphocyte responses to cytomegalovirus in normal and simian immunodeficiency virus-infected rhesus macaques. J Virol 70:7725–7733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Yue Y, Zhou SS, Barry PA (2003) Antibody responses to rhesus cytomegalovirus glycoprotein B in naturally infected rhesus macaques. J Gen Virol 84:3371–3379

    Article  CAS  PubMed  Google Scholar 

  274. Kaur A, Hale CL, Noren B, Kassis N, Simon MA, Johnson RP (2002) Decreased frequency of cytomegalovirus (CMV)-specific CD4+ T lymphocytes in simian immunodeficiency virus-infected rhesus macaques: inverse relationship with CMV viremia. J Virol 76:3646–3658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Kaur A, Kassis N, Hale CL, Simon M, Elliott M, Gomez-Yafal A, Lifson JD, Desrosiers RC, Wang F, Barry P, Mach M, Johnson RP (2003) Direct relationship between suppression of virus-specific immunity and emergence of cytomegalovirus disease in simian AIDS. J Virol 77:5749–5758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Yue Y, Wang Z, Abel K, Li J, Strelow L, Mandarino A, Eberhardt MK, Schmidt KA, Diamond DJ, Barry PA (2008) Evaluation of recombinant modified vaccinia Ankara virus-based rhesus cytomegalovirus vaccines in rhesus macaques. Med Microbiol Immunol 197:117–123

    Article  CAS  PubMed  Google Scholar 

  277. Yue Y, Kaur A, Eberhardt MK, Kassis N, Zhou SS, Tarantal AF, Barry PA (2007) Immunogenicity and protective efficacy of DNA vaccines expressing rhesus cytomegalovirus glycoprotein B, phosphoprotein 65-2, and viral interleukin-10 in rhesus macaques. J Virol 81:1095–1109

    Article  CAS  PubMed  Google Scholar 

  278. Wussow F, Yue Y, Martinez J, Deere JD, Longmate J, Herrmann A, Barry PA, Diamond DJ (2013) A vaccine based on rhesus cytomegalovirus UL128 complex induces broadly neutralizing antibodies in rhesus macaques. J Virol 87:1322–1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Valencia S, Gill RB, Dowdell KC, Wang Y, Hornung R, Bowman JJ, Lacayo JC, Cohen JI (2019) Comparison of vaccination with rhesus CMV (RhCMV) soluble gB with a RhCMV replication-defective virus deleted for MHC class I immune evasion genes in a RhCMV challenge model. Vaccine 37:333–342

    Article  CAS  PubMed  Google Scholar 

  280. Sturgill ER, Malouli D, Hansen SG, Burwitz BJ, Seo S, Schneider CL, Womack JL, Verweij MC, Ventura AB, Bhusari A, Jeffries KM, Legasse AW, Axthelm MK, Hudson AW, Sacha JB, Picker LJ, Früh K (2016) Natural killer cell evasion is essential for infection by Rhesus cytomegalovirus. PLoS Pathog 12:e1005868

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  281. Hansen SG, Vieville C, Whizin N, Coyne-Johnson L, Siess DC, Drummond DD, Legasse AW, Axthelm MK, Oswald K, Trubey CM, Piatak M Jr, Lifson JD, Nelson JA, Jarvis MA, Picker LJ (2009) Effector memory T cell responses are associated with protection of rhesus monkeys from mucosal simian immunodeficiency virus challenge. Nat Med 15:293–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Hansen SG, Zak DE, Xu G, Ford JC, Marshall EE, Malouli D, Gilbride RM, Hughes CM, Ventura AB, Ainslie E, Randall KT, Selseth AN, Rundstrom P, Herlache L, Lewis MS, Park H, Planer SL, Turner JM, Fischer M, Armstrong C, Zweig RC, Valvo J, Braun JM, Shankar S, Lu L, Sylwester AW, Legasse AW, Messerle M, Jarvis MA, Amon LM, Aderem A, Alter G, Laddy DJ, Stone M, Bonavia A, Evans TG, Axthelm MK, Früh K, Edlefsen PT, Picker LJ (2018) Prevention of tuberculosis in rhesus macaques by a cytomegalovirus-based vaccine. Nat Med 24:130–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Hansen SG, Powers CJ, Richards R, Ventura AB, Ford JC, Siess D, Axthelm MK, Nelson JA, Jarvis MA, Picker LJ, Fruh K (2010) Evasion of CD8+ T cells is critical for superinfection by cytomegalovirus. Science 328:102–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Holtappels R, Podlech J, Grzimek NK, Thomas D, Pahl-Seibert MF, Reddehase MJ (2001) Experimental preemptive immunotherapy of murine cytomegalovirus disease with CD8 T-cell lines specific for ppM83 and pM84, the two homologs of human cytomegalovirus tegument protein ppUL83 (pp65). J Virol 75:6584–6600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Podlech J, Holtappels R, Pahl-Seibert MF, Steffens HP, Reddehase MJ (2000) Murine model of interstitial cytomegalovirus pneumona in syngenic bone marrow transplantation: persistence of protective pulmonary CD8-T-cell infiltrates after clearance of acute infection. J Virol 74:7496–7507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Holtappels R, Munks MW, Podlech J, Reddehase MJ (2006) CD8 T-cell-based immunotherapy of cytomegalovirus diseae in the mouse model of the immunocompromised bone marrow transplantation recipient. In: Reddehase MJ (ed) Cytomegaloviruses: molecular biology and immunology. Caister, Norfolk, pp 383–419

    Google Scholar 

  287. Hill AB (2018) The immune response to CMV infection and vaccination in mice, monkeys and humans: recent developments. Curr Opin Virol 28:161–166

    Article  CAS  PubMed  Google Scholar 

  288. Scalzo AA, Fitzgerald NA, Wallace CR, Gibbons AE, Smart YC, Burton RC, Shellam GR (1992) The effect of the Cmv-1 resistance gene, which is linked to the natural killer cell gene complex, is mediated by natural killer cells. J Immunol 149:581–589

    Article  CAS  PubMed  Google Scholar 

  289. Scalzo AA, Fitzgerald NA, Simmons A, La Vista AB, Shellam GR (1990) Cmv-1, a genetic locus that controls murine cytomegalovirus replication in the spleen. J Exp Med 171:1469–1483

    Article  CAS  PubMed  Google Scholar 

  290. Brown MG, Zhang J, Du Y, Stoll J, Yokoyama WM, Scalzo AA (1999) Localization on a physical map of the NKC-linked Cmv1 locus between Ly49b and the Prp gene cluster on mouse chromosome 6. J Immunol 163:1991–1999

    Article  CAS  PubMed  Google Scholar 

  291. Webb JR, Lee SH, Vidal SM (2002) Genetic control of innate immune responses against cytomegalovirus: MCMV meets its match. Genes Immun 3:250–262

    Article  CAS  PubMed  Google Scholar 

  292. Lee SH, Girard S, Macina D, Busa M, Zafer A, Belouchi A, Gros P, Vidal SM (2001) Susceptibility to mouse cytomegalovirus is associated with deletion of an activating natural killer cell receptor of the C-type lectin superfamily. Nat Genet 28:42–45

    Article  CAS  PubMed  Google Scholar 

  293. Depatie C, Chalifour A, Pare C, Lee SH, Vidal SM, Lemieux S (1999) Assessment of Cmv1 candidates by genetic mapping and in vivo antibody depletion of NK cell subsets. Int Immunol 11:1541–1551

    Article  CAS  PubMed  Google Scholar 

  294. Cheng TP, French AR, Plougastel BF, Pingel JT, Orihuela MM, Buller ML, Yokoyama WM (2008) Ly49h is necessary for genetic resistance to murine cytomegalovirus. Immunogenetics 60:565–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Cooper MA, Yokoyama WM (2010) Memory-like responses of natural killer cells. Immunol Rev 235:297–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Elliott JM, Yokoyama WM (2011) Unifying concepts of MHC-dependent natural killer cell education. Trends Immunol 32:364–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Fodil-Cornu N, Lee SH, Belanger S, Makrigiannis AP, Biron CA, Buller RM, Vidal SM (2008) Ly49h-deficient C57BL/6 mice: a new mouse cytomegalovirus-susceptible model remains resistant to unrelated pathogens controlled by the NK gene complex. J Immunol 181:6394–6405

    Article  CAS  PubMed  Google Scholar 

  298. Zeleznjak J, Popovic B, Krmpotic A, Jonjic S, Lisnic VJ (2017) Mouse cytomegalovirus encoded immunoevasins and evolution of Ly49 receptors—Sidekicks or enemies? Immunol Lett 189:40–47

    Article  CAS  PubMed  Google Scholar 

  299. Hadaya K, de Rham C, Bandelier C, Bandelier C, Ferrari-Lacraz S, Jendly S, Berney T, Buhler L, Kaiser L, Seebach JD, Tiercy JM, Martin PY, Villard J (2008) Natural killer cell receptor repertoire and their ligands, and the risk of CMV infection after kidney transplantation. Am J Transplant 8:2674–2683

    Article  CAS  PubMed  Google Scholar 

  300. Bacon L, Eagle RA, Meyer M, Easom N, Young NT, Trowsdale J (2004) Two human ULBP/RAET1 molecules with transmembrane regions are ligands for NKG2D. J Immunol 173:1078–1084

    Article  CAS  PubMed  Google Scholar 

  301. Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL, Spies T (1999) Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285:727–729

    Article  CAS  PubMed  Google Scholar 

  302. Chalupny NJ, Sutherland CL, Lawrence WA, Rein-Weston A, Cosman D (2003) ULBP4 is a novel ligand for human NKG2D. Biochem Biophys Res Commun 305:129–135

    Article  PubMed  CAS  Google Scholar 

  303. Eagle RA, Traherne JA, Ashiru O, Wills MR, Trowsdale J (2006) Regulation of NKG2D ligand gene expression. Hum Immunol 67:159–169

    Article  CAS  PubMed  Google Scholar 

  304. Eagle RA, Traherne JA, Hair JR, Jafferji I, Trowsdale J (2009) ULBP6/RAET1L is an additional human NKG2D ligand. Eur J Immunol 39:3207–3216

    Article  CAS  PubMed  Google Scholar 

  305. Rolle A, Mousavi-Jazi M, Eriksson M, Odeberg J, Soderberg-Naucler C, Cosman D, Karre K, Cerboni C (2003) Effects of human cytomegalovirus infection on ligands for the activating NKG2D receptor of NK cells: up-regulation of UL16-binding protein (ULBP)1 and ULBP2 is counteracted by the viral UL16 protein. J Immunol 171:902–908

    Article  PubMed  Google Scholar 

  306. Orange JS (2013) Natural killer cell deficiency. J Allergy Clin Immunol 132:515–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Walton SM, Wyrsch P, Munks MW, Zimmermann A, Hengel H, Hill AB, Oxenius A (2008) The dynamics of mouse cytomegalovirus-specific CD4 T cell responses during acute and latent infection. J Immunol 181:1128–1134

    Article  CAS  PubMed  Google Scholar 

  308. Jonjic S, Mutter W, Weiland F, Reddehase MJ, Koszinowski UH (1989) Site-restricted persistent cytomegalovirus infection after selective long-term depletion of CD4+ T lymphocytes. J Exp Med 169:1199–1212

    Article  CAS  PubMed  Google Scholar 

  309. Lucin P, Pavic I, Polic B, Jonjic S, Koszinowski UH (1992) Gamma interferon-dependent clearance of cytomegalovirus infection in salivary glands. J Virol 66:1977–1984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Brizić I, Hiršl L, Šustić M, Golemac M, Britt WJ, Krmpotić A, Jonjić S (2019) CD4 T cells are required for maintenance of CD8 T(RM) cells and virus control in the brain of MCMV-infected newborn mice. Med Microbiol Immunol 208:487–494

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  311. Holtappels R, Podlech J, Geginat G, Steffens HP, Thomas D, Reddehase MJ (1998) Control of murine cytomegalovirus in the lungs: relative but not absolute immunodominance of the immediate-early 1 nonapeptide during the antiviral cytolytic T-lymphocyte response in pulmonary infiltrates. J Virol 72:7201–7212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Reddehase MJ, Weiland F, Munch K, Jonjic S, Luske A, Koszinowski UH (1985) Interstitial murine cytomegalovirus pneumonia after irradiation: characterization of cells that limit viral replication during established infection of the lungs. J Virol 55:264–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Holtappels R, Bohm V, Podlech J, Reddehase MJ (2008) CD8 T-cell-based immunotherapy of cytomegalovirus infection: "proof of concept" provided by the murine model. Med Microbiol Immunol 197:125–134

    Article  PubMed  Google Scholar 

  314. Kurz S, Steffens HP, Mayer A, Harris JR, Reddehase MJ (1997) Latency versus persistence or intermittent recurrences: evidence for a latent state of murine cytomegalovirus in the lungs. J Virol 71:2980–2987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Sell S, Dietz M, Schneider A, Holtappels R, Mach M, Winkler TH (2015) Control of murine cytomegalovirus infection by γδ T cells. PLoS Pathog 11:e1004481

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  316. Baroncelli S, Barry PA, Capitanio JP, Lerche NW, Otsyula M, Mendoza SP (1997) Cytomegalovirus and simian immunodeficiency virus coinfection: longitudinal study of antibody responses and disease progression. J Acquir Immune Defic Syndr Hum Retrovirol 15:5–15

    Article  CAS  PubMed  Google Scholar 

  317. Sequar G, Britt WJ, Lakeman FD, Lockridge KM, Tarara RP, Canfield DR, Zhou SS, Gardner MB, Barry PA (2002) Experimental coinfection of rhesus macaques with rhesus cytomegalovirus and simian immunodeficiency virus: pathogenesis. J Virol 76:7661–7671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Bialas KM, Permar SR (2016) The march towards a vaccine for congenital CMV: rationale and models. PLoS Pathog 12:e1005355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  319. Reuter JD, Gomez DL, Wilson JH, Van Den Pol AN (2004) Systemic immune deficiency necessary for cytomegalovirus invasion of the mature brain. J Virol 78:1473–1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Woolf NK, Jaquish DV, Koehrn FJ (2007) Transplacental murine cytomegalovirus infection in the brain of SCID mice. Virol J 4:26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  321. Bia FJ, Griffith BP, Fong CK, Hsiung GD (1983) Cytomegaloviral infections in the guinea pig: experimental models for human disease. Rev Infect Dis 5:177–195

    Article  CAS  PubMed  Google Scholar 

  322. Bia FJ, Miller SA, Davidson KH (1984) The guinea pig cytomegalovirus model of congenital human cytomegalovirus infection. Birth Defects 20:233–241

    CAS  PubMed  Google Scholar 

  323. Griffith BP, McCormick SR, Booss J, Hsiung GD (1986) Inbred guinea pig model of intrauterine infection with cytomegalovirus. Am J Pathol 122:112–119

    CAS  PubMed  PubMed Central  Google Scholar 

  324. Borune N, Schleiss M, Bravo F, Bernstein D (2001) Preconception immunization with a cytomegalovirus (CMV) glycoprotein vaccine improves pregnancy outcome in a guniea pig model of congenital CMV infection. J Infect Dis 183:59–64

    Article  Google Scholar 

  325. Schleiss MR (2007) Comparison of vaccine strategies against congenital CMV infection in the guinea pig model. J Clin Virol 41:224–230

    Article  PubMed  CAS  Google Scholar 

  326. Harrison CJ, Britt WJ, Chapan NM, Mullican J, Tracy S (1995) Reduced congenital cytomegalovirus (CMV) infection after maternal immunization with a guinea pig CMV glycoprotein before gestational primary CMV infection in the guinea pig model. J Infect Dis 172:1212–1220

    Article  CAS  PubMed  Google Scholar 

  327. Choi K, Root M, McGregor A (2016) A novel non-replication-competent cytomegalovirus capsid mutant vaccine strategy is effective in reducing congenital infection. J Virol 90:7902–7919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  328. Schleiss MR, Permar SR, Plotkin SA (2017) Progress toward development of a vaccine against congenital cytomegalovirus infection. Clin Vaccine Immunol 24:e00268–e00217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  329. Swanson EC, Gillis P, Hernandez-Alvarado N, Fernández-Alarcón C, Schmit M, Zabeli JC, Wussow F, Diamond DJ, Schleiss MR (2015) Comparison of monovalent glycoprotein B with bivalent gB/pp65 (GP83) vaccine for congenital cytomegalovirus infection in a guinea pig model: Inclusion of GP83 reduces gB antibody response but both vaccine approaches provide equivalent protection against pup mortality. Vaccine 33:4013–4018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  330. Schleiss MR, Bourne N, Stroup G, Bravo FJ, Jensen NJ, Bernstein DI (2004) Protection against congenital cytomegalovirus infection and disease in guinea pigs, conferred by a purified recombinant glycoprotein B vaccine. J Infect Dis 189:1374–1381

    Article  CAS  PubMed  Google Scholar 

  331. Auerbach MR, Yan D, Vij R, Hongo J-A, Nakamura G, Vernes J-M, Meng YG, Lein S, Chan P, Ross J, Carano R, Deng R, Lewin-Koh N, Xu M, Feierbach B (2014) A neutralizing anti-gH/gL monoclonal antibody is protective in the guinea pig model of congenital CMV infection. PLoS Pathog 10:e1004060

    Article  PubMed  PubMed Central  Google Scholar 

  332. Chatterjee A, Harrison CJ, Britt WJ, Li O, Bewtra C (1999) Immunization with hyperimmune anti-gB serum prevents congenital CMV infection in guinea pigs, In APS/SPR Annual Meeting, San Francisco, CA

    Google Scholar 

  333. Hashimoto K, Yamada S, Katano H, Fukuchi S, Sato Y, Kato M, Yamaguchi T, Moriishi K, Inoue N (2013) Effects of immunization of pregnant guinea pigs with guinea pig cytomegalovirus glycoprotein B on viral spread in the placenta. Vaccine 31:3199–3205

    Article  CAS  PubMed  Google Scholar 

  334. Woolf NK (1991) Guinea pig model of congenital CMV-induced hearing loss: a review. Transplant Proc 23:32–34

    CAS  PubMed  Google Scholar 

  335. Park AH, Gifford T, Schleiss MR, Dahlstrom L, Chase S, McGill L, Li W, Alder SC (2010) Development of cytomegalovirus-mediated sensorineural hearing loss in a Guinea pig model. Arch Otolaryngol Head Neck Surg 136:48–53

    Article  PubMed  Google Scholar 

  336. Bialas KM, Tanaka T, Tran D, Varner V, Cisneros De La Rosa E, Chiuppesi F, Wussow F, Kattenhorn L, Macri S, Kunz EL, Estroff JA, Kirchherr J, Yue Y, Fan Q, Lauck M, O’Connor DH, Hall AHS, Xavier A, Diamond DJ, Barry PA, Kaur A, Permar SR (2015) Maternal CD4+ T cells protect against severe congenital cytomegalovirus disease in a novel nonhuman primate model of placental cytomegalovirus transmission. Proc Natl Acad Sci U S A 112:13645–13650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  337. Revello MG, Lazzarotto T, Guerra B, Spinillo A, Ferrazi E, Kustermann A, Guaschino S, Vergani P, Todros T, Frusca T, Arossa A, Furione M, Rognoni V, Rizzo N, Gabrielli L, Klersy C, Gerna G, Group., f. t. C. S (2014) A randomized trial of hyperimmune globulin to prevent congenital cytomegalovirus. N Engl J Med 370:1316–1326

    Article  CAS  PubMed  Google Scholar 

  338. Blázquez-Gamero D, Galindo Izquierdo A, Del Rosal T, Baquero-Artigao F, Izquierdo Méndez N, Soriano-Ramos M, Rojo Conejo P, González-Tomé MI, García-Burguillo A, Pérez Pérez N, Sánchez V, Ramos-Amador JT, De la Calle M (2019) Prevention and treatment of fetal cytomegalovirus infection with cytomegalovirus hyperimmune globulin: a multicenter study in Madrid. J Matern Retal Neonatal Med 32:617–625

    Article  CAS  Google Scholar 

  339. Britt WJ, Cekinovic D, Jonjic S (2013) Murine model of neonatal cytomegalovirus infection. In: Reddehasse M (ed) Cytomegaloviruses. Cassister, London

    Google Scholar 

  340. Koontz T, Bralic M, Tomac J, Pernjak-Pugel E, Bantug G, Jonjic S, Britt WJ (2008) Altered development of the brain after focal herpesvirus infection of the central nervous system. J Exp Med 205:423–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  341. Bradford RD, Yoo Y-G, Golemac M, Pugel EP, Jonjic S, Britt WJ (2015) Murine CMV-induced hearing loss is associated with inner ear inflammation and loss of spiral ganglia neurons. PLoS Pathog 11:e1004774

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  342. Kosmac K, Bantug GR, Pugel EP, Cekinovic D, Jonjic S, Britt WJ (2013) Glucocorticoid treatment of MCMV infected newborn mice attenuates CNS inflammation and limits deficits in cerebellar development. PLoS Pathog 9:e1003200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  343. Seleme MC, Kosmac K, Jonjic S, Britt WJ (2017) Tumor necrosis factor alpha-induced recruitment of inflammatory mononuclear cells leads to inflammation and altered brain development in murine cytomegalovirus-infected newborn mice. J Virol 91:e01983–e01916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  344. Sung CYW, Seleme MC, Payne S, Jonjic S, Hirose K, Britt W (2019) Virus-induced cochlear inflammation in newborn mice alters auditory function. JCI Insight 4:e128878

    Article  PubMed Central  Google Scholar 

  345. Stagno S, Reynolds DW, Huang E-S, Thames SD, Smith RJ, Alford CA (1977) Congenital cytomegalovirus infection: occurrence in an immune population. N Engl J Med 296:1254–1258

    Article  CAS  PubMed  Google Scholar 

  346. Adler SP, Starr SE, Plotkin SA, Hempfling SH, Buis J, Manning ML, Best AM (1995) Immunity induced by primary human cytomegalovirus infection protects against secondary infection among women of childbearing age. J Infect Dis 171:26–32

    Article  CAS  PubMed  Google Scholar 

  347. Pass RF, Zhang C, Evans A, Simpson T, Andrews W, Huang ML, Corey L, Hill J, Davis E, Flanagan C, Cloud G (2009) Vaccine prevention of maternal cytomegalovirus infection. N Engl J Med 360:1191–1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  348. Bernstein DI, Munoz FM, Callahan ST, Rupp R, Wootton SH, Edwards KM, Turley CB, Stanberry LR, Patel SM, Mcneal MM, Pichon S, Amegashie C, Bellamy AR (2016) Safety and efficacy of a cytomegalovirus glycoprotein B (gB) vaccine in adolescent girls: A randomized clinical trial. Vaccine 34:313–319

    Article  CAS  PubMed  Google Scholar 

  349. Hansen SG, Ford JC, Lewis MS, Ventura AB, Hughes CM, Coyne-Johnson L, Whizin N, Oswald K, Shoemaker R, Swanson T, Legasse AW, Chiuchiolo MJ, Parks CL, Axthelm MK, Nelson JA, Jarvis MA, Piatak M Jr, Lifson JD, Picker LJ (2011) Profound early control of highly pathogenic SIV by an effector memory T-cell vaccine. Nature 473:523–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  350. Wloch MK, Smith LR, Boutsaboualoy S, Reyes L, Han C, Kehler J, Smith HD, Selk L, Nakamura R, Brown JM, Marbury T, Wald A, Rolland A, Kaslow D, Evans T, Boeckh M (2008) Safety and immunogenicity of a bivalent cytomegalovirus DNA vaccine in healthy adult subjects. J Infect Dis 197:1634–1642

    Article  CAS  PubMed  Google Scholar 

  351. Griffiths PD, Stanton A, McCarrell E, Smith C, Osman M, Harber M, Davenport A, Jones G, Wheeler DC, O’Beirne J, Thorburn D, Patch D, Atkinson CE, Pichon S, Sweny P, Lanzman M, Woodford E, Rothwell E, Old N, Kinyanjui R, Haque T, Atabani S, Luck S, Prideaux S, Milne RS, Emery VC, Burroughs AK (2011) Cytomegalovirus glycoprotein-B vaccine with MF59 adjuvant in transplant recipients: a phase 2 randomised placebo-controlled trial. Lancet 377:1256–1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  352. Bernstein DI, Reap EA, Katen K, Watson A, Smith K, Norberg P, Olmsted RA, Hoeper A, Morris J, Negri S, Maughan MF, Chulay JD (2009) Randomized, double-blind, phase I trial of alphavirus replicon vaccine for cytomegalovirus in CMV seronegative adult volunteers. Vaccine 28:484–493

    Article  CAS  PubMed  Google Scholar 

  353. Heineman TC, Schleiss M, Bernstein DI, Spaete RR, Yan L, Duke G, Prichard M, Wang Z, Yan Q, Sharp MA, Klein N, Arvin AM, Kemble G (2006) A phase 1 study of 4 live, recombinant human cytomegalovirus Towne/Toledo chimeric vaccines. J Infect Dis 193:1350–1360

    Article  CAS  PubMed  Google Scholar 

  354. La Rosa C, Longmate J, Lacey SF, Kaltcheva T, Sharan R, Marsano D, Kwon P, Drake J, Williams B, Denison S, Broyer S, Couture L, Nakamura R, Kelsey MI, Krieg AM, Diamond DJ, Zaia JA (2012) Clinical evaluation of safety and immunogenicity of PADRE-cytomegalovirus (CMV) and tetanus-CMV fusion peptide vaccines with or without PF03512676 adjuvant. J Infect Dis 205:1294–1304

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  355. Snydman DR (1993) Review of the efficacy of cytomegalovirus immune globulin in the prophylaxis of CMV disease in renal transplant recipients. Transplant Proc 25:25–26

    CAS  PubMed  Google Scholar 

  356. Yeager AS, Grumet FC, Hafleigh EB, Arvin AM, Bradley JS, Prober CG (1981) Prevention of transfusion-acquired cytomegalovirus infections in newborn infants. J Pediatr 98:281–287

    Article  CAS  PubMed  Google Scholar 

  357. Rubin R (2002) Clinical approach to infection in the compromised host. In: Rubin R, Young LS (eds) Infection in the organ transplant recipient. Kluwer Academic Press, New York, pp 573–679

    Google Scholar 

  358. Nigro G, Adler SP (2011) Cytomegalovirus infections during pregnancy. Curr Opin Obstet Gynecol 23:123–128

    Article  PubMed  Google Scholar 

  359. Hedlund M, Stenqvist AC, Nagaeva O, Kjellberg L, Wulff M, Baranov V, Mincheva-Nilsson L (2009) Human placenta expresses and secretes NKG2D ligands via exosomes that down-modulate the cognate receptor expression: evidence for immunosuppressive function. J Immunol 183:340–351

    Article  CAS  PubMed  Google Scholar 

  360. Iwasenko JM, Howard J, Arbuckle S, Graf N, Hall B, Craig ME, Rawlinson WD (2011) Human cytomegalovirus infection is detected frequently in stillbirths and is associated with fetal thrombotic vasculopathy. J Infect Dis 203:1526–1533

    Article  PubMed  Google Scholar 

  361. La Torre R, Nigro G, Mazzocco M, Best AM, Adler SP (2006) Placental enlargement in women with primary maternal cytomegalovirus infection is associated with fetal and neonatal disease. Clin Infect Dis 43:994–1000

    Article  PubMed  Google Scholar 

  362. Pereira L, Maidji E (2008) Cytomegalovirus infection in the human placenta: maternal immunity and developmentally regulated receptors on trophoblasts converge. Curr Top Microbiol Immunol 325:383–395

    CAS  PubMed  Google Scholar 

  363. Scott GM, Chow SS, Craig ME, Pang CN, Hall B, Wilkins MR, Jones CA, Lloyd AR, Rawlinson WD (2012) Cytomegalovirus infection during pregnancy with maternofetal transmission induces a proinflammatory cytokine bias in placenta and amniotic fluid. J Infect Dis 205:1305–1310

    Article  CAS  PubMed  Google Scholar 

  364. Cui X, Meza BP, Adler SP, McVoy MA (2008) Cytomegalovirus vaccines fail to induce epithelial entry neutralzing antibodies comparable to natural infection. Vaccine 26:5760–5766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  365. Gerna G, Sarasini A, Partone M, Percivalle E, Fiorina L, Campanini G, Gallina A, Baldanti F, Revello MG (2008) Human cytomegalvirus serum neutralizing antibodies block virus infection of endothelial/epithelial cells but not fibroblasts, early during primary infection. J Gen Virol 89:853–865

    Article  CAS  PubMed  Google Scholar 

  366. Lilleri D, Kabanova A, Lanzavecchia A, Gerna G (2012) Antibodies against neutralization epitopes of human cytomegalovirus gH/gL/pUL128-130-131 complex and virus spreading may correlate with virus control in vivo. J Clin Immunol 32(6):1324–1331

    Article  CAS  PubMed  Google Scholar 

  367. Jacobson MA, Adler SP, Sinclair E, Black D, Smith A, Chu A, Moss RB, Wloch MK (2009) A CMV DNA vaccine primes for memory immune responses to live-attenuated CMV (Towne strain). Vaccine 27:1540–1548

    Article  CAS  PubMed  Google Scholar 

  368. Boppana SB, Miller J, Britt WJ (1996) Transplacentally acquired antiviral antibodies and outcome in congenital human cytomegalovirus infection. Viral Immunol 9:211–218

    Article  CAS  PubMed  Google Scholar 

  369. Borysiewicz LK, Graham KS, Hickling JK, Mason PD, Sissons JCP (1988) Human cytomegalovirus-specific cytotoxic T cells: their precursor frequency and stage specificity. Eur J Immunol 18:269–275

    Article  CAS  PubMed  Google Scholar 

  370. Wills MR, Carmichael AJ, Mynard K, Jin X, Weekes MP, Plachter B, Sissons JG (1996) The human cytotoxic T lymphocyte (CTL) response to cytomegalovirus is dominated by structural protein pp65: frequency, specificity and T-cell receptor usage of pp65-specific CTL. J Virol 70:7569–7579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  371. Pass RF, Duliege AM, Boppana SB, Britt WJ, Granoff DM, Sekulovich R, Burke RL (1995) A phase I trial of BIOCINE CMV gB vaccine in seronegative adults, In Fifth International Cytomegalovirus Conference, Stockholm, Sweden

    Google Scholar 

  372. Sabbaj S, Pass RF, Goepfert PA, Pichon S (2011) Glycoprotein B vaccine is capable of boosting both antibody and CD4 T-cell responses to cytomegalovirus in chronically infected women. J Infect Dis 203:1534–1541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  373. Bubic I, Wagner M, Krmpoti A, Saulig T, Kim S, Yokoyama WM, Jonji S, Koszinowski UH (2004) Gain of virulence caused by loss of a gene in murine cytomegalovirus. J Virol 78:7536–7544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  374. Crnkovic-Mertens I, Messerle M, Milotic I, Szepan U, Kucic N, Krmpotic A, Jonjic S, Koszinowski UH (1998) Virus attenuation after deletion of the cytomegalovirus Fc receptor gene is not due to antibody control. J Virol 72:1377–1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  375. Chang WL, Barry PA, Szubin R, Wang D, Baumgarth N (2009) Human cytomegalovirus suppresses type I interferon secretion by plasmacytoid dendritic cells through its interleukin 10 homolog. Virology 390:330–337

    Article  CAS  PubMed  Google Scholar 

  376. Logsdon NJ, Eberhardt MK, Allen CE, Barry PA, Walter MR (2011) Design and analysis of rhesus cytomegalovirus IL-10 mutants as a model for novel vaccines against human cytomegalovirus. PLoS One 6:e28127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  377. Jones BC, Logsdon NJ, Josephson K, Cook J, Barry PA, Walter MR (2002) Crystal structure of human cytomegalovirus IL-10 bound to soluble human IL-10R1. Proc Natl Acad Sci U S A 99:9404–9409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  378. Hughes BL (2019) Randomized trial to prevent congenital cytomegalovirus, In IDWeek 2019, Washington, DC

    Google Scholar 

  379. Stagno S, Dworsky M, Torres J, Mesa T, Hirsh T (1982) Prevalence and importance of congenital cytomegalovirus infection in three different populations. J Pediatr 101:897–900

    Article  CAS  PubMed  Google Scholar 

  380. Adler SP, Finney JW, Manganello AM, Best AM (1996) Prevention of child-to-mother transmission of cytomegalovirus by changing behaviors: a randomized controlled trial. Ped Infect Dis J 15:240–246

    Article  CAS  Google Scholar 

  381. Picone O, Vauloup-Fellous C, Cordier AG, Parent Du Chatelet I, Senat MV, Frydman R, Grangeot-Kaeros L (2009) A 2-year study on cytomegalovirus infection during pregnancy in a French hospital. BJOC 116:818–823

    CAS  Google Scholar 

  382. Revello MG, Tibaldi G, Masuelli G, Frisina V, Sacchi A, Furione M, Arossa A, Spinillo A, Klersy C, Ceccarelli M, Gerna G, Todros T (2015) Prevention of primary cytomegalovirus infection in pregnancy. EBioMedicine 2:1205–1210

    Article  PubMed  PubMed Central  Google Scholar 

  383. Paya CV, Humar A, Dominguez E, Washburn K, Blumberg E, Alexander B, Freeman R, Heaton N, Pescovitz MD, Group, V. S. O. T. S (2004) Efficacy and safety of valganciclovir vs oral ganciclovir for prevention of cytomegalovirus disease in solid organ transplant recipients. Am J Transplant 4:611–620

    Article  CAS  PubMed  Google Scholar 

  384. Kotton CN, Kumar D, Caliendo AM, Asberg A, Chou S, Snydman DR, Allen U, Humar A (2010) International consensus guidelines on the management of cytomegalovirus in solid organ transplantation. Transplantation 89:779–795

    Article  PubMed  Google Scholar 

  385. Asberg A, Humar A, Jardine AG, Rollag H, Pescovitz MD, Mouas H, Bignamini A, Toz H, Dittmer I, Montejo M, Hartmann A, Group, V. S (2009) Long-term outcomes of CMV disease treatment with valganciclovir versus IV ganciclovir in solid organ transplant recipients. Am J Transplant 9:1205–1213

    Article  CAS  PubMed  Google Scholar 

  386. Ljungman P, de la Camara R, Cordonnier C, Einsele H, Englehard D, Reusser P, Styczynski J, Ward K, Leukemia, E. C. o. I. i (2008) Manamagement of CMV, HHV-6, HHV-7 and Kaposi-sarcoma associated herpesvirus (HHV-8) infections in patients with hematological malignancies and after SCT. Bone Marrow Transplant 42:227–240

    Article  CAS  PubMed  Google Scholar 

  387. Tomblyn M, Chiller T, Einsele H, Gress R, Sepkowitz K, Storek J, Wingard JR, Young JA, Boeckh MJ, Center for International Blood and Marrow Transplant Research (CIBMTR); National Marrow Donor Program (NMDP); European Blood and Marrow Transplant Group (EBMT); American Society of Blood and Marrow Transplantation (ASBMT); Canadian Blood and Marrow Transplant Group (CBMTG); Infectious Disease Society of America (IDSA); Society for Healthcare Epidemiology of America (SHEA); Association of Medical Microbiology and Infectious Diseases Canada (AMMI); Centers for Disease Control and Prevention (CDC) (2009) Guidelines for preventing infectious complications among hematopoietic cell transplant recipients: a global perspective. Biol Blood Marrow Transplant 15:1143–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  388. El Helou G, Razonable RR (2019) Letermovir for the prevention of cytomegalovirus infection and disease in transplant recipients: an evidence-based review. Infect Drug Resist 12:1481–1491

    Article  PubMed  PubMed Central  Google Scholar 

  389. Drew WL, Sweet ES, Miner RC, Mocarski ES (1984) Multiple infections by cytomegalovirus in patients with acquired immune deficiency syndrome: documentation by Southern blot hybridization. J Infect Dis 150:952–953

    Article  CAS  PubMed  Google Scholar 

  390. Burkhardt C, Himmelein S, Britt W, Winkler T, Mach M (2009) Glycoprotein N subtypes of human cytomegalovirus induce a strain-specific antibody response during natural infection. J Gen Virol 90:1951–1961

    Article  CAS  PubMed  Google Scholar 

  391. Dal Monte P, Pignatelli S, Mach M, Landini MP (2001) The product of human cytomegalovirus UL73 is a new polymorphic structural glycoprotein (gpUL73). J Hum Virol 4:26–34

    CAS  PubMed  Google Scholar 

  392. Rasmussen L, Geissler A, Cowan C, Chase A, Winters M (2002) The genes encoding the gCIII complex of human cytomegalovirus exist in highly diverse combinations in clinical isolates. J Virol 76:10841–10848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  393. Cudini J, Roy S, Houldcroft CJ, Bryant JM, Depledge DP, Tutill H, Veys P, Williams R, Worth AJJ, Tamuri AU, Goldstein RA, Breuer J (2019) Human cytomegalovirus haplotype reconstruction reveals high diversity due to superinfection and evidence of within-host recombination. Proc Natl Acad Sci U S A 116:5693–5698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  394. Hodson EM, Barclay PG, Craig JC, Jones C, Kable K, Strippoli GF, Vimalachandra D, Webster AC (2005) Antiviral medications for preventing cytomegalovirus disease in solid organ transplant recipients. Cochrane Database Syst Rev 2:CD003774

    Google Scholar 

  395. Mussi-Pinhata MM, Yamamoto AY (2020) Natural history of congenital cytomegalovirus infeciton in highly seropositive populations. J Infect Dis 221:S15–S22

    Article  PubMed  PubMed Central  Google Scholar 

  396. Pass RF, Fowler KB, Boppana SB, Britt WJ, Stagno S (2006) Congenital cytomegalovirus infection following first trimester maternal infection: symptoms at birth and outcome. J Clin Virol 35:216–220

    Article  PubMed  Google Scholar 

  397. Enders G, Daiminger A, Bader U, Exler S, Enders M (2011) Intrauterine transmission and clinical outcome of 248 pregnancies with primary cytomegalovirus infection in relation to gestational age. J Clin Virol 52:244–246

    Article  PubMed  Google Scholar 

  398. Andersen HK, Brostrom K, Hansen KB, Leerhoy J, Pedersen M, Osterballe O, Felsager U, Mogensen S (1979) A prospective study on the incidence and significance of congenital cytomegalovirus infection. Acta Paediatr Scand 68:329–336

    Article  CAS  PubMed  Google Scholar 

  399. Larke RBP, Wheatley E, Saigal S, Chernesky MA (1980) Congenital cytomegalovirus infection in an urban Canadian community. J Infect Dis 142:647–653

    Article  CAS  PubMed  Google Scholar 

  400. Peckham CS, Chin KS, Coleman JC, Henderson K, Hurley R, Preece PM (1983) Cytomegalovirus infection in pregnancy: preliminary findings from a prospective study. Lancet 1:1352–1355

    Article  CAS  PubMed  Google Scholar 

  401. Child SJ, Hakki M, De Niro KL, Geballe AP (2004) Evasion of cellular antiviral responses by human cytomegalovirus TRS1 and IRS1. J Virol 78:197–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  402. Brune W, Nevels M, Shenk T (2003) Murine cytomegalovirus m41 open reading frame encodes a Golgi-localized antiapoptotic progein. J Virol 77:11633–11643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  403. Jurak I, Schumacher U, Simic H, Voigt S, Brune W (2008) Murine cytomegalovirus m38.5 protein inhibits Bax-mediated cell death. J Virol 82:4812–4822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  404. Cam M, Handke W, Picard-Maureau M, Brune W (2010) Cytomegaloviruses inhibit Bak- and Bax-mediated apoptosis with two separate viral proteins. Cell Death Differ 17:655–665

    Article  CAS  PubMed  Google Scholar 

  405. Skaletskaya A, Bartle LM, Chittenden T, McCormick AL, Mocarski E, Goldmacher VS (2001) A cytomegalovirus-encoded inhibitor of apoptosis that suppresses caspase-8 activation. Proc Natl Acad Sci U S A 98:7829–7834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  406. Brune W, Hasan M, Krych M, Bubic I, Jonjic S, Koszinowski UH (2001) Secreted virus-encoded proteins reflect murinr cytomegalovirus productivity in organs. J Infect Dis 184:1320–1324

    Article  CAS  PubMed  Google Scholar 

  407. Lenac T, Arapavic J, Traven L, Krmpotic A, Jonjic S (2008) Murine cytomegalovirus regulation of NKG2D ligands. Med Microbiol Immunol 197:159–166

    Article  PubMed  Google Scholar 

  408. Lodoen MB, Abenes G, Umamoto S, Houchins JP, Liu F, Lanier LL (2004) The cytomegalovirus m155 gene product subverts natural killer cell antiviral protection by disruption of H60-NKG2D interactions. J Exp Med 200:1075–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  409. McCormick AL, Skaletskaya A, Barry PA, Mocarski ES, Goldmacher VS (2003) Differential function and expression of the viral inhibitor of caspase 8-induced apoptosis (vICA) and the viral mitochondria-localized inhibitor of apoptosis (vMIA) cell death suppressors conserved in primate and rodent cytomegaloviruses. Virology 316:221–233

    Article  CAS  PubMed  Google Scholar 

  410. Chalupny NJ, Rein-Weston A, Dosch S, Cosman D (2006) Down-regulation of the NKG2D ligand MICA by the human cytomegalovirus glycoprotein UL142. Biochem Biophys Res Commun 346:175–181

    Article  CAS  PubMed  Google Scholar 

  411. Fruh K, Yang Y (1999) Antigen presentation by MHC class I and its regulation by interferon gamma. Curr Opin Immunol 11:76–81

    Article  CAS  PubMed  Google Scholar 

  412. Bubeck A, Reusch U, Wagner M, Ruppert T, Muranyi W, Kloetzel PM, Koszinowski U (2002) The glycoprotein gp48 of murine cytomegalovirusL proteasome-dependent cytosolic dislocation and degradation. J Biol Chem 277:2216–2224

    Article  CAS  PubMed  Google Scholar 

  413. Vidal SM, Lanier LL (2006) NK cell recognition of moouse cytomegalovirus-infected cells. Curr Top Microbiol Immunol 298:183–206

    CAS  PubMed  Google Scholar 

  414. Babic M, Pyzik M, Zafirova B, Mitrovic M, Butorac V, Lanier LL, Krompotic A, Vidal SM, Jonjic S (2010) Cytomegalovirus immunoevasion reveals the physiological role of "missing self" recognition in natural killer cell dependent virus control in vivo. J Exp Med 207:2663–2673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  415. Tomazin R, Boname J, Hegde NR, Lewinsohn DM, Altschuler Y, Jones TR, Cresswell P, Nelson JA, Riddell SR (1999) Cytomegalovirus US2 destroys two components of the MHC class II pathway, preventing recognition by CD+ T cells. Nat Med 5:1039–1043

    Article  CAS  PubMed  Google Scholar 

  416. Jackson SE, Mason GM, Wills MR (2011) Human cytomegalovirus immunity and immune evasion. Virus Res 157:151–160

    Article  CAS  PubMed  Google Scholar 

  417. Kharfan-Dabaja MA, Boeckh M, Wilck MB, Langston AA, Chu AH, Wloch MK, Guterwill DF, Smith LR, Rolland AP, Kenney RT (2012) A novel therapeutic cytomegalovirus DNA vaccine in allogeneic haemopoietic stem-cell transplantation: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Infect Dis 12:290–299

    Article  CAS  PubMed  Google Scholar 

  418. Adler SP, Lewis N, Conlon A, Christiansen MP, Al-Ibrahim M, Rupp R, Fu T-M, Bautista O, Tang H, Wang D, Fisher A, Culp T, Das R, Beck K, Tamms G, Musey L, V160-001 Study Group (2019) Phase 1 clinical trial of a conditionally replication-defective human cytomegalovirus (CMV) vaccine in CMV-seronegative subjects. J Infect Dis 220:411–419

    Article  CAS  PubMed  Google Scholar 

  419. La Rosa C, Longmate J, Martinez J, Zhou Q, Kaltcheva TI, Tsai W, Drake J, Carroll M, Wussow F, Chiuppesi F, Hardwick N, Dadwal S, Aldoss I, Nakamura R, Zaia JA, Diamond DJ (2017) MVA vaccine encoding CMV antigens safely induces durable expansion of CMV-specific T cells in healthy adults. Blood 129:114–125

    Article  PubMed  PubMed Central  Google Scholar 

  420. Arora N, Novak Z, Fowler KB, Boppana SB, Ross SA (2010) Cytomegalovirus viruria and DNAemia in healthy seropositive women. J Infect Dis 202:1800–1803

    Article  PubMed  PubMed Central  Google Scholar 

  421. Rivera LB, Boppana SB, Fowler KB, Britt WJ, Stagno S, Pass RF (2002) Predictors of hearing loss in children with symptomatic congenital cytomegalovirus infection. Pediatrics 110:762–767

    Article  PubMed  Google Scholar 

  422. Ross SA, Novak Z, Fowler KB, Arora N, Britt WJ, Boppana SB (2009) Cytomegalovirus blood viral load and hearing loss in young children with congenital infection. Pediatr Infect Dis J 28:588–592

    Article  PubMed  PubMed Central  Google Scholar 

  423. Gnann JW, Ahlmen J, Svalander C et al (1988) Inflammatory cells in transplanted kidneys are infected by human cytomegalovirus. Am J Pathol 132:239–248

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Britt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Boppana, S.B., Britt, W.J. (2021). Recent Approaches and Strategies in the Generation of Anti-human Cytomegalovirus Vaccines. In: Yurochko, A.D. (eds) Human Cytomegaloviruses. Methods in Molecular Biology, vol 2244. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1111-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1111-1_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1110-4

  • Online ISBN: 978-1-0716-1111-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics