Skip to main content

Comparative Genomics, from the Annotated Genome to Valuable Biological Information: A Case Study

  • Protocol
  • First Online:
Bacterial Pangenomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2242))

Abstract

High availability of fast, cheap, and high-throughput next generation sequencing techniques resulted in acquisition of numerous de novo sequenced and assembled bacterial genomes. It rapidly became clear that digging out useful biological information from such a huge amount of data presents a considerable challenge. In this chapter we share our experience with utilization of several handy open source comparative genomic tools. All of them were applied in the studies focused on revealing inter- and intraspecies variation in pectinolytic plant pathogenic bacteria classified to Dickeya solani and Pectobacterium parmentieri. As the described software performed well on the species within the Pectobacteriaceae family, it presumably may be readily utilized on some closely related taxa from the Enterobacteriaceae family. First of all, implementation of various annotation software is discussed and compared. Then, tools computing whole genome comparisons including generation of circular juxtapositions of multiple sequences, revealing the order of synteny blocks or calculation of ANI or Tetra values are presented. Besides, web servers intended either for functional annotation of the genes of interest or for detection of genomic islands, plasmids, prophages, CRISPR/Cas are described. Last but not least, utilization of the software designed for pangenome studies and the further downstream analyses is explained. The presented work not only summarizes broad possibilities assured by the comparative genomic approach but also provides a user-friendly guide that might be easily followed by nonbioinformaticians interested in undertaking similar studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chain P, Kurtz S, Ohlebusch E, Slezak T (2003) An applications-focused review of comparative genomics tools: capabilities, limitations and future challenges. Brief Bioinform 4:105–123. https://doi.org/10.1093/bib/4.2.105

    Article  CAS  PubMed  Google Scholar 

  2. Miller W, Makova KD, Nekrutenko A, Hardison RC (2004) Comparative genomics. Annu Rev Genomics Hum Genet 5:15–56. https://doi.org/10.1146/annurev.genom.5.061903.180057

    Article  CAS  PubMed  Google Scholar 

  3. Van Sluys MA, Monteiro-Vitorello CB, Camargo LEA et al (2002) Comparative genomic analysis of plant-associated bacteria. Annu Rev Phytopathol 40:169–189. https://doi.org/10.1146/annurev.phyto.40.030402.090559

    Article  CAS  PubMed  Google Scholar 

  4. Sugawara M, Epstein B, Badgley BD et al (2013) Comparative genomics of the core and accessory genomes of 48 Sinorhizobium strains comprising five genospecies. Genome Biol 14:R17. https://doi.org/10.1186/gb-2013-14-2-r17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tian X, Zhang Z, Yang T et al (2016) Comparative genomics analysis of Streptomyces species reveals their adaptation to the marine environment and their diversity at the genomic level. Front Microbiol 7:998. https://doi.org/10.3389/fmicb.2016.00998

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rasko DA, Rosovitz MJ, Myers GSA et al (2008) The pangenome structure of Escherichia coli: comparative genomic analysis of E. coli commensal and pathogenic isolates. J Bacteriol 190:6881–6893. https://doi.org/10.1128/JB.00619-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mosquera-Rendón J, Rada-Bravo AM, Cárdenas-Brito S et al (2016) Pangenome-wide and molecular evolution analyses of the Pseudomonas aeruginosa species. BMC Genomics 17:45. https://doi.org/10.1186/s12864-016-2364-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang A, Yang M, Hu P et al (2011) Comparative genomic analysis of Streptococcus suis reveals significant genomic diversity among different serotypes. BMC Genomics 12:523. https://doi.org/10.1186/1471-2164-12-523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rouli L, Merhej V, Fournier PE, Raoult D (2015) The bacterial pangenome as a new tool for analysing pathogenic bacteria. New Microbes New Infect 7:72–85. https://doi.org/10.1016/j.nmni.2015.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. (2003) Act of 24 April 2003 on public benefit and voluntary work. The Council of Ministers, Warsaw

    Google Scholar 

  11. Vincent AT, Schiettekatte O, Goarant C et al (2019) Revisiting the taxonomy and evolution of pathogenicity of the genus Leptospira through the prism of genomics. PLoS Negl Trop Dis 13:e0007270. https://doi.org/10.1371/journal.pntd.0007270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. O’Connor E, McGowan J, McCarthy CGP et al (2019) Whole genome sequence of the commercially relevant mushroom strain Agaricus bisporus var. bisporus ARP23. G3 (Bethesda) 9:3057–3066. https://doi.org/10.1534/g3.119.400563

    Article  CAS  Google Scholar 

  13. Adeolu M, Alnajar S, Naushad S, Gupta RS (2016) Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int J Syst Evol Microbiol 66:5575–5599. https://doi.org/10.1099/ijsem.0.001485

    Article  CAS  PubMed  Google Scholar 

  14. Śledź W, Jafra S, Waleron M, Lojkowska E (2000) Genetic diversity of Erwinia carotovora strains isolated from infected plants grown in Poland. EPPO Bull 30:403–407. https://doi.org/10.1111/j.1365-2338.2000.tb00919.x

    Article  Google Scholar 

  15. Potrykus M, Golanowska M, Sledz W et al (2016) Biodiversity of Dickeya spp. isolated from potato plants and water sources in temperate climate. Plant Dis 100:408–417. https://doi.org/10.1094/PDIS-04-15-0439-RE

    Article  CAS  PubMed  Google Scholar 

  16. Zoledowska S, Motyka A, Zukowska D et al (2018) Population structure and biodiversity of Pectobacterium parmentieri isolated from potato fields in temperate climate. Plant Dis 102:154–164. https://doi.org/10.1094/PDIS-05-17-0761-RE

    Article  PubMed  Google Scholar 

  17. Waleron M, Waleron K, Lojkowska E (2013) Occurrence of Pectobacterium wasabiae in potato field samples. Eur J Plant Pathol 137:149–158. https://doi.org/10.1007/s10658-013-0227-2

    Article  Google Scholar 

  18. Waleron M, Misztak AE, Jonca J, Waleron KF (2019) First report of Pectobacterium polaris causing soft rot of potato in Poland. Plant Dis 103:144. https://doi.org/10.1094/PDIS-05-18-0861-PDN

    Article  Google Scholar 

  19. Waleron M, Waleron K, Lojkowska E (2015) First report of Pectobacterium carotovorum subsp. brasiliense causing soft rot on potato and other vegetables in Poland. Plant Dis 99:1271. https://doi.org/10.1094/PDIS-02-15-0180-PDN

    Article  Google Scholar 

  20. Zoledowska S (2019) Characterization of the biodiversity and pan-genome of plant pathogenic bacteria from Pectobacterium parmentieri species. PhD thesis. Univeristy of Gdańsk

    Google Scholar 

  21. Golanowska M, Potrykus M, Motyka-Pomagruk A et al (2018) Comparison of highly and weakly virulent Dickeya solani strains, with a view on the pangenome and panregulon of this species. Front Microbiol 9:1940. https://doi.org/10.3389/fmicb.2018.01940

    Article  PubMed  PubMed Central  Google Scholar 

  22. Misztak AE, śledź W, Mengoni A, Łojkowka E (2020) Comparative genomics and pangenome-oriented studies reveal high homogeneity of the agronomically relevant enterobacterial plant pathogen Dickeya solani. BMC Genomics 21: 449–467. https://doi.org/10.1186/s12864-020-06863-w

  23. Bentley S (2009) Sequencing the species pan-genome. Nat Rev Microbiol 7:258–259. https://doi.org/10.1038/nrmicro2123

    Article  CAS  PubMed  Google Scholar 

  24. Zoledowska S, Motyka-Pomagruk A, Sledz W et al (2018) High genomic variability in the plant pathogenic bacterium Pectobacterium parmenieri deciphered from de novo assembled complete genomes. BMC Genomics 19:751. https://doi.org/10.1186/s12864-018-5140-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Alikhan NF, Petty NK, Ben Zakour NL, Beatson SA (2011) BLAST ring image generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 12:402. https://doi.org/10.1186/1471-2164-12-402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Darling ACE, Mau B, Blattner FR, Perna NT (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14:1394–1403. https://doi.org/10.1101/gr.2289704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. https://doi.org/10.1093/bioinformatics/btu153

    Article  CAS  PubMed  Google Scholar 

  28. Tatusova T, DiCuccio M, Badretdin A et al (2016) Prokaryotic genome annotation pipeline. Nucleic Acids Res 44:6614–6624. https://doi.org/10.1093/nar/gkw569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Page AJ, Cummins CA, Hunt M et al (2015) Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31:3691–3693. https://doi.org/10.1093/bioinformatics/btv421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chaudhari NM, Gupta VK, Dutta C (2016) BPGA-an ultra-fast pan-genome analysis pipeline. Sci Rep 6:24373. https://doi.org/10.1038/srep24373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J (2016) JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 32:929–931. https://doi.org/10.1093/bioinformatics/btv681

    Article  CAS  PubMed  Google Scholar 

  32. Medema MH, Blin K, Cimermancic P et al (2011) antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res 39:W339–W346. https://doi.org/10.1093/nar/gkr466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Carattoli A, Zankari E, García-Fernández A et al (2014) In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 58:3895–3903. https://doi.org/10.1128/AAC.02412-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhou Y, Liang Y, Lynch KH et al (2011) PHAST: a fast phage search tool. Nucleic Acids Res 39:W347–W352. https://doi.org/10.1093/nar/gkr485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Arndt D, Grant JR, Marcu A et al (2016) PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 44:W16–W21. https://doi.org/10.1093/nar/gkw387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Couvin D, Bernheim A, Toffano-Nioche C et al (2018) CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res 46:W246–W251. https://doi.org/10.1093/nar/gky425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bertelli C, Laird MR, Williams KP et al (2017) IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res 45:W30–W35. https://doi.org/10.1093/nar/gkx343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Huerta-Cepas J, Forslund K, Coelho LP et al (2017) Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol 34:2115–2122. https://doi.org/10.1093/molbev/msx148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Stajich JE, Block D, Boulez K et al (2002) The Bioperl toolkit: Perl modules for the life sciences. Genome Res 12:1611–1618. https://doi.org/10.1101/gr.361602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tange O (2011) Gnu parallel-the command-line power tool. login 36:42–47

    Google Scholar 

  41. Camacho C, Coulouris G, Avagyan V et al (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421. https://doi.org/10.1186/1471-2105-10-421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hyatt D, Chen G-L, LoCascio PF et al (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11:119. https://doi.org/10.1186/1471-2105-11-119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Laslett D, Canback B (2004) ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res 32:11–16. https://doi.org/10.1093/nar/gkh152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Finn RD, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39:W29–W37. https://doi.org/10.1093/nar/gkr367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lagesen K, Hallin P, Rødland EA et al (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108. https://doi.org/10.1093/nar/gkm160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786. https://doi.org/10.1038/nmeth.1701

    Article  CAS  PubMed  Google Scholar 

  47. Kolbe DL, Eddy SR (2011) Fast filtering for RNA homology search. Bioinformatics 27:3102–3109. https://doi.org/10.1093/bioinformatics/btr545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Haft DH, DiCuccio M, Badretdin A et al (2018) RefSeq: an update on prokaryotic genome annotation and curation. Nucleic Acids Res 46:D851–D860. https://doi.org/10.1093/nar/gkx1068

    Article  CAS  PubMed  Google Scholar 

  49. Darling AE, Mau B, Perna NT (2010) Progressivemauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 5:e11147. https://doi.org/10.1371/journal.pone.0011147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Stothard P, Wishart DS (2005) Circular genome visualization and exploration using CGView. Bioinformatics 21:537–539. https://doi.org/10.1093/bioinformatics/bti054

    Article  CAS  PubMed  Google Scholar 

  51. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  52. Kanehisa M, Goto S, Sato Y et al (2014) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 42:D199–D205. https://doi.org/10.1093/nar/gkt1076

    Article  CAS  PubMed  Google Scholar 

  53. Galperin MY, Makarova KS, Wolf YI, Koonin EV (2015) Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res 43:D261–D269. https://doi.org/10.1093/nar/gku1223

    Article  CAS  PubMed  Google Scholar 

  54. Waack S, Keller O, Asper R et al (2006) Score-based prediction of genomic islands in prokaryotic genomes using hidden Markov models. BMC Bioinformatics 7:142. https://doi.org/10.1186/1471-2105-7-142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hsiao W, Wan I, Jones SJ, Brinkman FSL (2003) IslandPath: aiding detection of genomic islands in prokaryotes. Bioinformatics 19:418–420. https://doi.org/10.1093/bioinformatics/btg004

    Article  PubMed  Google Scholar 

  56. Langille MG, Hsiao WW, Brinkman FS (2008) Evaluation of genomic island predictors using a comparative genomics approach. BMC Bioinformatics 9:329. https://doi.org/10.1186/1471-2105-9-329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kurtz S (2010) The Vmatch large scale sequence analysis software. A manual. Hamburg, Germany

    Google Scholar 

  58. Biswas A, Fineran PC, Brown CM (2014) Accurate computational prediction of the transcribed strand of CRISPR non-coding RNAs. Bioinformatics 30:1805–1813. https://doi.org/10.1093/bioinformatics/btu114

    Article  CAS  PubMed  Google Scholar 

  59. Abby SS, Néron B, Ménager H et al (2014) MacSyFinder: a program to mine genomes for molecular systems with an application to CRISPR-Cas systems. PLoS One 9:e110726. https://doi.org/10.1371/journal.pone.0110726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Salzberg SL, Delcher AL, Kasif S, White O (1998) Microbial gene identification using interpolated Markov models. Nucleic Acids Res 26:544–548. https://doi.org/10.1093/nar/26.2.544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lowe T, Eddy S (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964. https://doi.org/10.1093/nar/25.5.955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ester M, Kriegel HP, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. KDD 96:226–231

    Google Scholar 

  63. Goris J, Konstantinidis KT, Klappenbach JA et al (2007) DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91. https://doi.org/10.1099/ijs.0.64483-0

    Article  CAS  PubMed  Google Scholar 

  64. Kurtz S, Phillippy A, Delcher AL et al (2004) Versatile and open software for comparing large genomes. Genome Biol 5:R12. https://doi.org/10.1186/gb-2004-5-2-r12

    Article  PubMed  PubMed Central  Google Scholar 

  65. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. https://doi.org/10.1093/nar/22.22.4673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Buchfink B, Xie C, Huson DH (2015) Fast and sensitive protein alignment using DIAMOND. Nat Methods 12:59–60. https://doi.org/10.1038/nmeth.3176

    Article  CAS  PubMed  Google Scholar 

  68. Jones P, Binns D, Chang H-Y et al (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics 30:1236–1240. https://doi.org/10.1093/bioinformatics/btu031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Grüning B, Dale R, Sjödin A et al (2018) Bioconda: sustainable and comprehensive software distribution for the life sciences. Nat Methods 15:475–476. https://doi.org/10.1038/s41592-018-0046-7

    Article  CAS  PubMed  Google Scholar 

  70. Delcher AL, Bratke KA, Powers EC, Salzberg SL (2007) Identifying bacterial genes and endosymbiont DNA with glimmer. Bioinformatics 23:673–679. https://doi.org/10.1093/bioinformatics/btm009

    Article  CAS  PubMed  Google Scholar 

  71. Majoros WH, Pertea M, Salzberg SL (2004) TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics 20:2878–2879. https://doi.org/10.1093/bioinformatics/bth315

    Article  CAS  PubMed  Google Scholar 

  72. Srividhya KV, Rao GV, Raghavenderan L et al (2006) Database and comparative identification of prophages. In: Intell. Control autom. Springer, Berlin Heidelberg, pp 863–868

    Chapter  Google Scholar 

  73. Clausen PTLC, Aarestrup FM, Lund O (2018) Rapid and precise alignment of raw reads against redundant databases with KMA. BMC Bioinformatics 19:307. https://doi.org/10.1186/s12859-018-2336-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Racine J (2006) Gnuplot 4.0: a portable interactive plotting utility. J Appl Econ 21:133–141. https://doi.org/10.1002/jae.885

    Article  Google Scholar 

  75. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. https://doi.org/10.1093/bioinformatics/btq461

    Article  CAS  PubMed  Google Scholar 

  76. Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659. https://doi.org/10.1093/bioinformatics/btl158

    Article  CAS  PubMed  Google Scholar 

  77. Li L, Stoeckert CJ, Roos DS (2003) OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13:2178–2189. https://doi.org/10.1101/GR.1224503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The sequencing and comparative genomics analyses were funded from National Science Centre in Poland via 2014/14/M/NZ8/00501 granted to EL. National Science Centre in Poland via grant 2016/21/N/NZ1/02783 is currently supporting the work of AMP. The authors are highly grateful to Dr. Michal Kabza for provision of the script for genome reorientation, written in Python language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa Lojkowska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zoledowska, S., Motyka-Pomagruk, A., Misztak, A., Lojkowska, E. (2021). Comparative Genomics, from the Annotated Genome to Valuable Biological Information: A Case Study. In: Mengoni, A., Bacci, G., Fondi, M. (eds) Bacterial Pangenomics. Methods in Molecular Biology, vol 2242. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1099-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1099-2_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1098-5

  • Online ISBN: 978-1-0716-1099-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics