Skip to main content

Update on Eosinophil Interaction with Mast Cells: The Allergic Effector Unit

  • Protocol
  • First Online:
Eosinophils

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2241))

Abstract

Mast cells and eosinophils are the key effector cells of allergy [1]. In general, allergic reactions are composed of two phases, namely an early phase and a late phase, and after that resolution occurs. If the allergic reactions fail to resolve after the late phase, allergic inflammation (AI) can evolve into a chronic phase mainly involving mast cells and eosinophils that abundantly coexist in the inflamed tissue in the late and chronic phases and cross-talk in a bidirectional manner. We defined these bidirectional interactions between MCs and Eos, as the “allergic effector unit.” This cross talk is mediated by both physical cell-cell contacts through cell surface receptors such as CD48, 2B4, and respective ligands and through released mediators such as various specific granular mediators, arachidonic acid metabolites, cytokines, and chemokines [2, 3]. The allergic effector unit can be studied in vitro in a customized co-culture system using mast cells and eosinophils derived from either mouse or human sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Minai-Fleminger Y, Levi-Schaffer F (2009) Mast cells and eosinophils: the two key effector cells in allergic inflammation. Inflamm Res 58:631–638. https://doi.org/10.1007/s00011-009-0042-6

    Article  CAS  PubMed  Google Scholar 

  2. Elishmereni M, Alenius HT, Bradding P et al (2011) Physical interactions between mast cells and eosinophils: a novel mechanism enhancing eosinophil survival in vitro. Allergy 66:376–385. https://doi.org/10.1111/j.1398-9995.2010.02494.x

    Article  CAS  PubMed  Google Scholar 

  3. Minai-Fleminger Y, Elishmereni M, Vita F et al (2010) Ultrastructural evidence for human mast cell-eosinophil interactions in vitro. Cell Tissue Res 341:405–415

    Article  PubMed  Google Scholar 

  4. Galli SJ, Grimbaldeston M, Tsai M (2008) Immunomodulatory mast cells: negative, as well as positive, regulators of immunity. Nat Rev Immunol 8:478–486. https://doi.org/10.1038/nri2327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bachelet I, Levi-Schaffer F, Mekori YA (2006) Mast cells: not only in allergy. Immunol Allergy Clin N Am 26:407–425. https://doi.org/10.1016/j.iac.2006.05.007

    Article  Google Scholar 

  6. Bischoff SC (2007) Role of mast cells in allergic and non-allergic immune responses: comparison of human and murine data. Nat Rev Immunol 7:93–104. https://doi.org/10.1038/nri2018

    Article  CAS  PubMed  Google Scholar 

  7. Puxeddu I, Piliponsky AM, Bachelet I, Levi-Schaffer F (2003) Mast cells in allergy and beyond. Int J Biochem Cell Biol 35:1601–1607

    Article  CAS  PubMed  Google Scholar 

  8. Theoharides TC, Kalogeromitros D (2006) The critical role of mast cells in allergy and inflammation. Ann N Y Acad Sci 1088:78–99. https://doi.org/10.1196/annals.1366.025

    Article  CAS  PubMed  Google Scholar 

  9. Galli SJ, Tsai M, Piliponsky AM (2008) The development of allergic inflammation. Nature 454:445–454. https://doi.org/10.1038/nature07204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Harvima IT, Levi-Schaffer F, Draber P et al (2014) Molecular targets on mast cells and basophils for novel therapies. J Allergy Clin Immunol 134:530–544. https://doi.org/10.1016/j.jaci.2014.03.007

    Article  CAS  PubMed  Google Scholar 

  11. Dahlin JS, Malinovschi A, Ohrvik H et al (2016) Lin- CD34hi CD117int/hi FcepsilonRI+ cells in human blood constitute a rare population of mast cell progenitors. Blood 127:383–391. https://doi.org/10.1182/blood-2015-06-650648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tatemoto K, Nozaki Y, Tsuda R et al (2006) Immunoglobulin E-independent activation of mast cell is mediated by Mrg receptors. Biochem Biophys Res Commun 349:1322–1328. https://doi.org/10.1016/j.bbrc.2006.08.177

    Article  CAS  PubMed  Google Scholar 

  13. O'Sullivan JA, Carroll DJ, Cao Y et al (2018) Leveraging Siglec-8 endocytic mechanisms to kill human eosinophils and malignant mast cells. J Allergy Clin Immunol 141(1774-1785):e1777. https://doi.org/10.1016/j.jaci.2017.06.028

    Article  CAS  Google Scholar 

  14. Mizrahi S, Gibbs BF, Karra L et al (2014) Siglec-7 is an inhibitory receptor on human mast cells and basophils. J Allergy Clin Immunol 134:230–233. https://doi.org/10.1016/j.jaci.2014.03.031

    Article  CAS  PubMed  Google Scholar 

  15. Bachelet I, Munitz A, Berent-Maoz B et al (2008) Suppression of normal and malignant kit signaling by a bispecific antibody linking kit with CD300a. J Immunol 180:6064–6069. https://doi.org/10.4049/jimmunol.180.9.6064

    Article  CAS  PubMed  Google Scholar 

  16. Bachelet I, Munitz A, Levi-Schaffer F (2006) Abrogation of allergic reactions by a bispecific antibody fragment linking IgE to CD300a. J Allergy Clin Immunol 117:1314–1320. https://doi.org/10.1016/j.jaci.2006.04.031

    Article  CAS  PubMed  Google Scholar 

  17. Bachelet I, Munitz A, Moretta A, Moretta L, Levi-Schaffer F (2005) The inhibitory receptor IRp60 (CD300a) is expressed and functional on human mast cells. J Immunol 175:7989–7995. https://doi.org/10.4049/jimmunol.175.12.7989

    Article  CAS  PubMed  Google Scholar 

  18. Gangwar RS, Landolina N, Arpinati L, Levi-Schaffer F (2017) Mast cell and eosinophil surface receptors as targets for anti-allergic therapy. Pharmacol Ther 170:37–63. https://doi.org/10.1016/j.pharmthera.2016.10.010

    Article  CAS  PubMed  Google Scholar 

  19. Kita H (2013) Eosinophils: multifunctional and distinctive properties. Int Arch Allergy Immunoly 161(Suppl 2):3–9. https://doi.org/10.1159/000350662

    Article  Google Scholar 

  20. Fulkerson PC, Rothenberg ME (2013) Targeting eosinophils in allergy, inflammation and beyond. Nat Rev Drug Discov 12:117–129. https://doi.org/10.1038/nrd3838

    Article  CAS  PubMed  Google Scholar 

  21. Gleich GJ, Adolphson CR (1986) The eosinophilic leukocyte: structure and function. Adv Immunol 39:177–253

    Article  CAS  PubMed  Google Scholar 

  22. Robida PA, Puzzovio PG, Pahima H et al (2018) Human eosinophils and mast cells: birds of a feather flock together. Immunol Rev 282:151–167. https://doi.org/10.1111/imr.12638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rothenberg ME, Hogan SP (2006) The eosinophil. Annu Rev Immunol 24:147–174. https://doi.org/10.1146/annurev.immunol.24.021605.090720

    Article  CAS  PubMed  Google Scholar 

  24. Elishmereni M, Bachelet I, Nissim Ben-Efraim AH et al (2013) Interacting mast cells and eosinophils acquire an enhanced activation state in vitro. Allergy 68:171–179. https://doi.org/10.1111/all.12059

    Article  CAS  PubMed  Google Scholar 

  25. Shakoory B, Fitzgerald SM, Lee SA et al (2004) The role of human mast cell-derived cytokines in eosinophil biology. J Interf Cytokine Res 24:271–281. https://doi.org/10.1089/107999004323065057

    Article  CAS  Google Scholar 

  26. Bachelet I, Munitz A, Mankutad D, Levi-Schaffer F (2006) Mast cell costimulation by CD226/CD112 (DNAM-1/Nectin-2): a novel interface in the allergic process. J BiolChem 281:27190–27196

    CAS  Google Scholar 

  27. Munitz A, Bachelet I, Fraenkel S et al (2005) 2B4 (CD244) is expressed and functional on human eosinophils. J Immunol 174:110–118

    Article  CAS  PubMed  Google Scholar 

  28. Blank U, Rivera J (2006) Assays for regulated exocytosis of mast cell granules. Curr Protoc Cell Biol Unit 15:11. Chapter 15. https://doi.org/10.1002/0471143030.cb1511s32

    Article  PubMed  Google Scholar 

  29. Berent-Maoz B, Gur C, Vita F et al (2011) Influence of FAS on murine mast cell maturation. Ann Allergy Asthma Immunol 106:239–244. https://doi.org/10.1016/j.anai.2010.12.001

    Article  CAS  PubMed  Google Scholar 

  30. Jensen BM, Swindle EJ, Iwaki S et al (2006) Generation, isolation, and maintenance of rodent mast cells and mast cell lines. Curr Protoc Immunol Unit 3:23. Chapter 3. https://doi.org/10.1002/0471142735.im0323s74

    Article  PubMed  Google Scholar 

  31. Dyer KD, Moser JM, Czapiga M et al (2008) Functionally competent eosinophils differentiated ex vivo in high purity from normal mouse bone marrow. J Immunol 181:4004–4009

    Article  CAS  PubMed  Google Scholar 

  32. Levi-Schaffer F, Austen KF, Gravallese PM et al (1986) Coculture of interleukin 3-dependent mouse mast cells with fibroblasts results in a phenotypic change of the mast cells. Proc Natl Acad Sci U S A 83:6485–6488. https://doi.org/10.1073/pnas.83.17.6485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kawakami T, Galli SJ (2002) Regulation of mast-cell and basophil function and survival by IgE. Nat Rev Immunol 2:773–786. https://doi.org/10.1038/nri914

    Article  CAS  PubMed  Google Scholar 

  34. Galli SJ, Kalesnikoff J, Grimbaldeston MA et al (2005) Mast cells as "tunable" effector and immunoregulatory cells: recent advances. Ann Rev Immunol 23:749–786

    Article  CAS  Google Scholar 

  35. Kalesnikoff J, Galli SJ (2008) New developments in mast cell biology. Nat Immunol 9:1215–1223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bloemen K, Verstraelen S, Van Den Heuvel R et al (2007) The allergic cascade: review of the most important molecules in the asthmatic lung. Immunol Lett 113:6–18

    Article  CAS  PubMed  Google Scholar 

  37. Prussin C, Metcalfe DD (2006) 5. IgE, mast cells, basophils, and eosinophils. J Allergy Clin Immunol 117(2 Suppl Mini-Primer):S450–S456

    Article  CAS  PubMed  Google Scholar 

  38. Minai-Fleminger Y, Gangwar RS, Migalovich-Sheikhet H et al (2014) The CD48 receptor mediates Staphylococcus aureus human and murine eosinophil activation. Clin Exp Allergy 44:1335–1346. https://doi.org/10.1111/cea.12422

    Article  CAS  PubMed  Google Scholar 

  39. Karra L, Gangwar RS, Puzzovio PG et al (2019) CD300a expression is modulated in atopic dermatitis and could influence the inflammatory response. Allergy 74:1377–1380. https://doi.org/10.1111/all.13724

    Article  PubMed  Google Scholar 

  40. Akula S, Paivandy A, Fu Z et al (2020) Quantitative in-depth analysis of the mouse mast cell transcriptome reveals organ-specific mast cell heterogeneity. Cell 9(1):211. https://doi.org/10.3390/cells9010211

    Article  CAS  Google Scholar 

  41. Shimanaka Y, Kono N, Taketomi Y et al (2017) Omega-3 fatty acid epoxides are autocrine mediators that control the magnitude of IgE-mediated mast cell activation. Nat Med 23:1287–1297. https://doi.org/10.1038/nm.4417

    Article  CAS  PubMed  Google Scholar 

  42. Nath AP, Ritchie SC, Byars SG et al (2017) An interaction map of circulating metabolites, immune gene networks, and their genetic regulation. Genome Biol 18:146. https://doi.org/10.1186/s13059-017-1279-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pretlow TP, Wilk AI, Davis LA et al (1988) Comparison of different methods for the purification of eosinophils from human peripheral blood. Anal Biochem 175:334–341

    Article  CAS  PubMed  Google Scholar 

  44. Hansel TT, De Vries IJ, Iff T et al (1991) An improved immunomagnetic procedure for the isolation of highly purified human blood eosinophils. J Immunol Methods 145:105–110

    Article  CAS  PubMed  Google Scholar 

  45. Saito H, Ebisawa M, Sakaguchi N et al (1995) Characterization of cord-blood-derived human mast cells cultured in the presence of steel factor and interleukin-6. Int Arch Allergy Immunol 107:63–65

    Article  CAS  PubMed  Google Scholar 

  46. Mitsui H, Furitsu T, Dvorak AM et al (1993) Development of human mast cells from umbilical cord blood cells by recombinant human and murine c-kit ligand. Proc Natl Acad Sci U S A 90:735–739. https://doi.org/10.1073/pnas.90.2.735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Elishmereni M, Fyhrquist N, Singh Gangwar R et al (2014) Complex 2B4 regulation of mast cells and eosinophils in murine allergic inflammation. J Invest Dermatol 134:2928–2937. https://doi.org/10.1038/jid.2014.280

    Article  CAS  PubMed  Google Scholar 

  48. Yurt RW, Leid RW Jr, Austen KF (1977) Native heparin from rat peritoneal mast cells. J Biol Chem 252:518–521

    Article  CAS  PubMed  Google Scholar 

  49. Kovarova M (2013) Isolation and characterization of mast cells in mouse models of allergic diseases. Methods Mol Biol 1032:109–119. https://doi.org/10.1007/978-1-62703-496-8_8

    Article  CAS  PubMed  Google Scholar 

  50. Yamada N, Matsushima H, Tagaya Y et al (2003) Generation of a large number of connective tissue type mast cells by culture of murine fetal skin cells. J Invest Dermatol 121:1425–1432. https://doi.org/10.1046/j.1523-1747.2003.12613.x

    Article  CAS  PubMed  Google Scholar 

  51. Matsue H, Kambe N, Shimada S (2009) Murine fetal skin-derived cultured mast cells: a useful tool for discovering functions of skin mast cells. J Invest Dermatol 129:1120–1125. https://doi.org/10.1038/jid.2009.44

    Article  CAS  PubMed  Google Scholar 

  52. Konno S, Adachi M, Asano K et al (1993) Inhibitory effect of interferon-beta on mouse spleen-derived mast cells. Mediat Inflamm 2:243–246. https://doi.org/10.1155/S096293519300033X

    Article  CAS  Google Scholar 

  53. Levi-Schaffer F, Dayton ET, Austen KF et al (1987) Mouse bone marrow-derived mast cells cocultured with fibroblasts. Morphology and stimulation-induced release of histamine, leukotriene B4, leukotriene C4, and prostaglandin D2. J Immunol 139:3431–3441

    CAS  PubMed  Google Scholar 

  54. Nilsson G, Blom T, Kusche-Gullberg M et al (1994) Phenotypic characterization of the human mast-cell line HMC-1. Scand J Immunol 39:489–498

    Article  CAS  PubMed  Google Scholar 

  55. Kirshenbaum AS, Akin C, Wu Y et al (2003) Characterization of novel stem cell factor responsive human mast cell lines LAD 1 and 2 established from a patient with mast cell sarcoma/leukemia; activation following aggregation of FcepsilonRI or FcgammaRI. Leuk Res 27:677–682

    Article  CAS  PubMed  Google Scholar 

  56. Rottem M, Okada T, Goff JP et al (1994) Mast cells cultured from the peripheral blood of normal donors and patients with mastocytosis originate from a CD34+/Fc epsilon RI-cell population. Blood 84:2489–2496

    Article  CAS  PubMed  Google Scholar 

  57. Salari H, Takei F, Miller R et al (1987) Novel technique for isolation of human lung mast cells. J Immunol Methods 100(1-2):91–97

    Article  CAS  PubMed  Google Scholar 

  58. Church MK, Clough GF (1999) Human skin mast cells: in vitro and in vivo studies. Ann Allergy Asthma Immunol 83:471–475. https://doi.org/10.1016/S1081-1206(10)62853-0

    Article  CAS  PubMed  Google Scholar 

  59. Fox CC, Dvorak AM, Peters SP et al (1985) Isolation and characterization of human intestinal mucosal mast cells. J Immunol 135:483–491

    CAS  PubMed  Google Scholar 

  60. Sperr WR, Bankl HC, Mundigler G et al (1994) The human cardiac mast cell: localization, isolation, phenotype, and functional characterization. Blood 84:3876–3884

    Article  CAS  PubMed  Google Scholar 

  61. Massey WA, Guo CB, Dvorak AM et al (1991) Human uterine mast cells. Isolation, purification, characterization, ultrastructure, and pharmacology. J Immunol 147:1621–1627

    CAS  PubMed  Google Scholar 

  62. Finotto S, Dolovich J, Denburg JA et al (1994) Functional heterogeneity of mast cells isolated from different microenvironments within nasal polyp tissue. Clin Exp Immunol 95:343–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Reichman H, Rozenberg P, Munitz A (2017) Mouse eosinophils: identification, isolation, and functional analysis. Curr Protoc Immunol 119:14.43.1–14.43.22. https://doi.org/10.1002/cpim.35

    Article  CAS  Google Scholar 

  64. Cypcar D, Sorkness R, Sedgwick J et al (1996) Rat eosinophils: isolation and characterization of superoxide production. J Leuk Biol 60:101–105

    Article  CAS  Google Scholar 

  65. Wong TW, Jelinek DF (2013) Purification of functional eosinophils from human bone marrow. J Immunol Methods 387:130–139. https://doi.org/10.1016/j.jim.2012.10.006

    Article  CAS  PubMed  Google Scholar 

  66. Kajiwara N, Sasaki T, Bradding P et al (2010) Activation of human mast cells through the platelet-activating factor receptor. J Allergy Clin Immunol 125(1137–1145):e1136. https://doi.org/10.1016/j.jaci.2010.01.056

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Israel Science Foundation and Aimwell Charitable Trust (London, UK). F. Levi-Schaffer is affiliated with the Dr. Adolph and Klara Brettler Center for Research in Molecular Pharmacology and Therapeutics, School of Pharmacy of the Hebrew University of Jerusalem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Levi-Schaffer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gangwar, R.S., Pahima, H., Puzzovio, P.G., Levi-Schaffer, F. (2021). Update on Eosinophil Interaction with Mast Cells: The Allergic Effector Unit. In: Walsh, G.M. (eds) Eosinophils. Methods in Molecular Biology, vol 2241. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1095-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1095-4_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1094-7

  • Online ISBN: 978-1-0716-1095-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics