Skip to main content

Inorganic Nanostructures for Brain Tumor Management

  • Protocol
  • First Online:
Nanotherapy for Brain Tumor Drug Delivery

Part of the book series: Neuromethods ((NM,volume 163))

Abstract

The nanoparticles have been widely investigated as therapeutic agents for cancer treatments in biomedical fields due to their unique physical/chemical properties, versatile synthetic strategies, easy surface functionalization, and excellent biocompatibility. Even though the advancement of certain treatment techniques is available for the diagnosis of the tumor, still the blood-brain barrier is the obstruction to the delivery of drug molecules to the tumor cells in the central nervous system (CNS) and brain parenchyma. Though nano enabled therapy make promise to deliver the anticancer drugs to cross the blood-brain barrier (BBB). This chapter focuses on the synthesis techniques and advanced characterization techniques adopted to design and develop inorganic nanostructures. Various inorganic nanostructure-based cancer therapeutic agents, including gold nanoparticles, magnetic nanoparticles, carbon nanotube, earth metal oxide nanoparticles, and other nanostructures, have also been discussed. Related challenges with this research area and future prospect are also discussed herein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. “CBTRUS—2016 CBTRUS Fact Sheet.” Accessed March 9, 2018. (“Explore Brain Cancer Treatment Options & Advanced Therapies,” 2018)

    Google Scholar 

  2. “Brain, Other CNS and Intracranial Tumours Statistics.” Cancer Research UK, May 14, 2015. http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/brain-other-cns-and-intracranial-tumours

  3. Weathers S-P, O’Brien B, de Groot J (2016) Commentary: Anita Mahajan, and Commentary: Sujit S. Prabhu. “Tumors of the central nervous system”. In: Kantarjian HM, Wolff RA (eds) The MD Anderson manual of medical oncology, 3rd edn. McGraw-Hill Medical, New York, NY. http://accessmedicine.mhmedical.com/content.aspx?aid=1126744985

    Google Scholar 

  4. “Gupta Longati And Brain Cancer.” prezi.com. Accessed March 29, 2018. https://prezi.com/erleq_tkx5if/guptalongati-and-brain-cancer/

  5. Shah V, Kochar P (2018) Brain cancer: implication to disease, therapeutic strategies and tumor targeted drug delivery approaches. Recent Pat Anticancer Drug Discov 13(1):70–85. http://www.eurekaselect.com/157831/article

    Article  CAS  PubMed  Google Scholar 

  6. “Craniospinal Malignancies—Oxford Medicine. Accessed March 29, 2018. http://oxfordmedicine.com/view/10.1093/med/9780199656103.001.0001/med-9780199656103-chapter-56

  7. Huse JT, Holland EC (2010) Targeting brain Cancer: advances in the molecular pathology of malignant glioma and Medulloblastoma. Nat Rev Cancer 10(5):319–331. https://doi.org/10.1038/nrc2818

    Article  CAS  PubMed  Google Scholar 

  8. DeAngelis LM, Wen PY (2015) Primary and metastatic tumors of the nervous system. In: Kasper D, Fauci A, Hauser S, Dan L, Larry Jameson J, Loscalzo J (eds) Harrison’s principles of internal medicine, 19th edn. McGraw-Hill Education, New York, NY. http://accessmedicine.mhmedical.com/content.aspx?aid=1129103876

    Google Scholar 

  9. Saha A, Ghosh SK, Roy C, Choudhury KB, Chakrabarty B, Sarkar R (2013) Demographic and clinical profile of patients with brain metastases: a retrospective study. Asian J Neurosurg 8(3):157–161. https://doi.org/10.4103/1793-5482.121688

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kantarijan HM, Wolff RA (2016) Tumors of the central nervous system. In: The MD Anderson manual of medical oncology, 3rd edn. McGraw-Hill Medical, New York

    Google Scholar 

  11. Grant R (2004) Overview: brain tumour diagnosis and management/Royal College of Physicians guidelines. J Neurol Neurosurg Psychiatry 75:ii18–ii23. https://doi.org/10.1136/jnnp.2004.040360

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bozgeyik Z, Onur MR, Poyraz AK (2013) The role of diffusion weighted magnetic resonance imaging in oncologic settings. Quant Imaging Med Surg 3:269–278. https://doi.org/10.3978/j.issn.2223-4292.2013.10.07

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kono K, Inoue Y, Nakayama K, Shakudo M, Morino M, Ohata K, Wakasa K, Yamada R (2001) The role of diffusion-weighted imaging in patients with brain tumors. Am J Neuroradiol 22:1081–1088

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Maier SE, Sun Y, Mulkern RV (2010) Diffusion imaging of brain tumors. NMR Biomed 23:849–864. https://doi.org/10.1002/nbm.1544

    Article  PubMed  PubMed Central  Google Scholar 

  15. Williams PD, Jones S, Zhang X, Lin JC-H, Leary RJ, Angenendt P, Mankoo P et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321:5897. https://doi.org/10.1126/science.1164382

    Article  CAS  Google Scholar 

  16. Hartmann C, Meyer J, Balss J, Capper D, Mueller W, Christians A, Felsberg J et al (2009) Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol 118(4):469–474

    Article  PubMed  Google Scholar 

  17. Yip S, Butterfield YS, Morozova O, Chittaranjan S, Blough MD, An J, Birol I et al (2012) Concurrent CIC mutations, IDH mutations and 1p/19q loss distinguish oligodendrogliomas from other cancers. J Pathol 226(1):7–16. https://doi.org/10.1002/path.2995

    Article  CAS  PubMed  Google Scholar 

  18. Bettegowda C, Agrawal N, Jiao Y, Sausen M, Wood LD, Hruban RH, Rodriguez FJ et al (2011) Mutations in CIC and FUBP1 Contribute to Human Oligodendroglioma. Science 333(6048):1453–1455. https://doi.org/10.1126/science.1210557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Heaphy CM, de Wilde RF, Jiao Y, Klein AP, Edil BH, Shi C, Bettegowda C et al (2011) Altered Telomeres in Tumors with ATRX and DAXX Mutations. Science 333(6041):425. https://doi.org/10.1126/science.1207313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brain Tumor: Risk Factors. Cancer.Net, June 25, 2012. https://www.cancer.net/cancer-types/brain-tumor/risk-factors

  21. Brain Tumors & Brain Cancer - ABC2 [WWW Document], n.d. https://abc2.org/guidance/brain-cancer-facts/risk-factors. Accessed May 27 2019

  22. Identify Top Brain Cancer Causes & Factors That Put You at Risk [WWW Document], 2018. Cancer Treat. Cent. Am. https://www.cancercenter.com/cancer-types/brain-cancer/risk-factors. Accessed May 27 2019

  23. Radiology (ACR), R.S. of N.A. (RSNA) and A.C. of, n.d. Brain tumor treatment [WWW Document]. https://www.radiologyinfo.org/en/info.cfm?pg=thera-brain. Accessed May 27 2019

  24. Radiotherapy treatment | Brain tumour (primary) | Cancer Research UK [WWW Document], n.d. https://www.cancerresearchuk.org/about-cancer/brain-tumours/treatment/radiotherapy/radiotherapy-treatment. Accessed May 27 2019

  25. Explore Brain Cancer Treatment Options & Advanced Therapies [WWW Document], 2018. Cancer treat. Cent. Am. https://www.cancercenter.com/cancer-types/brain-cancer/treatments. Accessed May 27 2019

  26. Liebner S, Dijkhuizen RM, Reiss Y, Plate KH, Agalliu D, Constantin G (March 2018) Functional morphology of the blood–brain barrier in health and disease. Acta Neuropathol 135(3):311–336. https://doi.org/10.1007/s00401-018-1815-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Engelhardt B, Liebner S (March 2014) Novel insights into the development and maintenance of the blood–brain barrier. Cell Tissue Res 355(3):687–699. https://doi.org/10.1007/s00441-014-1811-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Quail DF, Joyce JA (2017) The microenvironmental landscape of brain tumors. Cancer Cell 31(3):326–341. https://doi.org/10.1016/j.ccell.2017.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bhadoriya, Santosh Singh, Ankita Thakur, Major Hurdles for Brain Tumour Therapy and the Ways to Overcome Them: A Review. https://www.academia.edu/4974978/6_Major_hurdles_for_brain_tumour_therapy_and_the_ways_to_overcome_them. Accessed May 15, 2018

  30. Deeken JF, Löscher W (2007) The blood-brain barrier and Cancer: transporters, treatment, and Trojan horses. Clin Cancer Res 13(6):1663–1674. https://doi.org/10.1158/1078-0432.CCR-06-2854

    Article  CAS  PubMed  Google Scholar 

  31. Van Meir EG et al (2010) Exciting new advances in neuro-oncology; the avenue to cure for malignant glioma. CA Cancer J Clin 60:166–193

    Article  PubMed  PubMed Central  Google Scholar 

  32. Van Meir EG, Sawamura Y, Diserens AC, Hamou MF, de Tribolet N (1990) Human glioblastoma cells release interleukin 6 in vivo and in vitro. Cancer Res 50:6683–6688

    PubMed  Google Scholar 

  33. Desbaillets I, Diserens A-C, de Tribolet N, Hamou M-F, Van Meir EGJ (1997) Upregulation of interleukin 8 by oxygen deprived cells in glioblastoma suggests a role in leukocyte activation, chemotaxis and angiogenesis. Exp Med 186:1201–1212

    Article  CAS  Google Scholar 

  34. Osuka S, Van Meir EG (2017) Overcoming therapeutic resistance in glioblastoma: the way forward. J Clin Invest 127:415–426

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tomitaka A, Kaushik A, Kevadiya B, Mukadam I, Gendelman HE, Khalili K, Liu G, Nair M (2019) Surface-engineered multimodal magnetic nanoparticles to manage CNS diseases. Drug Discov Today 24:873–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Juarranz Á, Jaén P, Sanz-Rodríguez F, Cuevas J, González S (2008) Photodynamic therapy of cancer: basic principles and applications. Clin Transl Oncol 10:148–154

    Article  CAS  PubMed  Google Scholar 

  37. Ericson MB, Wennberg A-M, Larkö O (2008) Review of photodynamic therapy in actinic keratosis and basal cell carcinoma. Ther Clin Risk Manag 4:1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jokerst JV, Gambhir SS (2011) Molecular imaging with theranostic nanoparticles. Acc Chem Res 44:1050–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Thakor AS, Gambhir SS (2013) Nanooncology: “The future of cancer diagnosis and therapy.”. CA Cancer J Clin 63:395–418

    Article  PubMed  Google Scholar 

  40. Chatterjee K, Sarkar S, Jagajjanani Rao K, Paria S (2014) Core/shell nanoparticles in biomedical applications. Adv Colloid Interf Sci 209:8–39

    Article  CAS  Google Scholar 

  41. Thrall JH (2004) Nanotechnology and medicine. Radiology 230:315–318

    Article  PubMed  Google Scholar 

  42. Jiang W, KimBetty YS, Rutka JT, Warren CCW (2008) Nanoparticle-mediated cellular response is sizedependent. Nat Nanotechnol 3:145–150

    Article  CAS  PubMed  Google Scholar 

  43. Peng G, Tisch U, Adams O, Hakim M, Shehada N, Broza YY, Billan S, Abdah-Bortnyak R, Kuten A, Haick H (2009) Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat Nanotechnol 4:669–673

    Article  CAS  PubMed  Google Scholar 

  44. Arole VM, Munde SV (2014) Fabrication of nanomaterials by top-down and bottom-up approaches-an overview. J Mater Sci 1:89–93

    Google Scholar 

  45. Sha D, Hsu S, Che Z, Chen C (2006) A dispatching rule for photolithography scheduling with an on-line rework strategy. Comput Indust Eng 50(3):233–247. https://doi.org/10.1016/j.cie.2006.04.002

    Article  Google Scholar 

  46. Yang J, Berggren K (2007) Using high contrast salty development of hydrogen silsequioxane for sub-10-nm half pitch lithography. J Vac Sci Technol A 25(6):2025

    Article  CAS  Google Scholar 

  47. Maldonado JR, Peckerar M (2016) X-ray lithography: some history, current status and future prospects. Microelectron Eng 161:87–93

    Article  CAS  Google Scholar 

  48. Vladimirsky Y, Bourdillon A, Vladimirsky O, Jiang W, Leonard Q (1999) Demagnification in proximity X-ray lithography and extensibility to 25 nm by optimizing Fresnel diffraction. J Phys D Appl Phys 32(22):114

    Article  Google Scholar 

  49. Vladimirsky Y (2003) X-ray lithography towards 15 nm, Jefferson Laboratory Technical Note 03-016

    Google Scholar 

  50. Cerrina F (2000) X-ray imaging: applications to patterning and lithography. J Phys D Appl Phys 33:R103

    Article  CAS  Google Scholar 

  51. Maldonado JR, Acosta RE, Angelopoulos M, Doany FE, Narayan C, Chandrasekhar C, Pomerene ATS, Shaw JM, Kimmel K (1998), X-ray mask pellicle, US Patent 5,793,836

    Google Scholar 

  52. Petar P, Keran Z, Math M (2014) Micromachining–review of literature from 1980 to 2010. Interdisciplinary Description of Complex Systems: INDECS 12, no. 1: 1–27

    Google Scholar 

  53. Gietzelt T, Eichhorn L (2012) Mechanical Machining by Drilling, Milling and Slotting. In: Kahrizi M (ed) Micromachining Techniques for Fabrication of Micro and Nano Structures. InTech, London, pp 159–182

    Google Scholar 

  54. Chae J, Park SS, Freiheit T (2006) Investigation of micro-cutting operations. Int J Mach Tool Manu 46(3–4):313–332. https://doi.org/10.1016/j.ijmachtools.2005.05.015

    Article  Google Scholar 

  55. Dornfeld D, Min S, Takeuchi Y (2006) Recent advances in mechanical micromachining. CIRP Ann Manuf Technol 55(2):745–768. https://doi.org/10.1016/j.cirp.2006.10.006

    Article  Google Scholar 

  56. Sina B, Arsalani N, Khataee A, Tabrizi AG (2018) Comparison of ball milling-hydrothermal and hydrothermal methods for synthesis of ZnO nanostructures and evaluation of their photocatalytic performance. J Ind Eng Chem 62:265–272

    Article  CAS  Google Scholar 

  57. Xing T, Sunarso J, Yang W, Yin Y, Glushenkov AM, Li LH, Howlett PC, Chen Y (2013) Ball milling: a green mechanochemical approach for synthesis of nitrogen doped carbon nanoparticles. Nanoscale 5:7970

    Article  CAS  PubMed  Google Scholar 

  58. Amirkhanlou S, Ketabchi M, Parvin N (2012) Nanocrystalline/nanoparticle ZnO synthesized by high energy ball milling process. Mater Lett 86:122

    Article  CAS  Google Scholar 

  59. Stolle A, Ranu B (2014) Ball Milling Towards Green Synthesis: Applications, Projects, Challenges. Royal Society of Chemistry, UK

    Book  Google Scholar 

  60. Abdel-Magid AF, Caron S (2006) Fundamentals of early clinical drug development: from synthesis design to formulation. John Wiley and Sons, Inc., Hoboken, New Jersey

    Book  Google Scholar 

  61. Ansari AR, Imran M, Yahia IS, Abdel-Wahab MS, Alshahrie A, Khan AH, Sharma C (2018) Effect of microwave power on morphology of AgO thin film grown using microwave plasma CVD. Int J Surf Sci Eng 12(1):1–2

    Article  CAS  Google Scholar 

  62. Ansari AR, Hussain S, Imran M, Abdel-wahab MS, Alshahrie A (2018) Synthesis, characterization and oxidation of metallic cobalt (Co) thin film into semiconducting cobalt oxide (Co3O4) thin film using microwave plasma CVD. Mater Res Exp 5(6):065003

    Article  CAS  Google Scholar 

  63. Ozaydin-Ince G, Coclite AM, Gleason KK (2012) CVD of polymetric thin films:applications in sensors, biotechnology, microelectronics/organic electronics, microfluidics, MEMS, composites and membranes. Rep Prog Phys 75:016501

    Article  PubMed  CAS  Google Scholar 

  64. Matsumura H (2019) Current status of catalytic chemical vapor deposition technology—history of research and current status of industrial implementation. Thin Solid Films 679:42–48

    Article  CAS  Google Scholar 

  65. Sharma R, Agrawal VV, Srivastava AK, Govind, Nain L, Imran M, Kabi SR, Sinha RK, Malhotra BD (2013) Phase control of nanostructured iron oxide for application to biosensor. J Mater Chem B 1:464

    Article  CAS  PubMed  Google Scholar 

  66. Kaushik A, Khan R, Solanki PR, Pandey P, Alam J, Ahmad S, Malhotra BD (2008) Iron oxide Nanoparticles- Chitosan composite based glucose biosensor. Biosens Bioelectron 24:676–683

    Article  CAS  PubMed  Google Scholar 

  67. Javed M, Shaik AH, Khan TA, Imran M, Aziz A, Ansari AR, Chandan MR (2018) Synthesis of stable waste palm oil based CuO nanofluid for heat transfer applications. Heat Mass Transf 54:1–7

    Article  CAS  Google Scholar 

  68. Kaushik A, Solanki PR, Ansari AA, Sumana G, Ahmad S, Malhotra BD (2009) Iron oxide-chitosan nanobiocomposite for urea sensor. Sensors Actuators B Chem 138(2):572–580

    Article  CAS  Google Scholar 

  69. Kaushik A, Solanki PR, Ansari AA, Ahmad S, Malhotra BD (2008) Chitosan–iron oxide nanobiocomposite based immunosensor for ochratoxin-A. Electrochem Commun 10(9):1364–1368

    Article  CAS  Google Scholar 

  70. Solanki PR, Kaushik A, Ansari AA, Sumana G, Malhotra BD (2008) Zinc oxide-chitosan nanobiocomposite for urea sensor. Appl Phys Lett 93(16):163903

    Article  CAS  Google Scholar 

  71. Kaushik A, Solanki PR, Ansari AA, Malhotra BD, Ahmad S (2009) Iron oxide-chitosan hybrid nanobiocomposite based nucleic acid sensor for pyrethroid detection. Biochem Eng J 46(2):132–140

    Article  CAS  Google Scholar 

  72. Kaushik A, Solanki PR, Kaneto K, Kim CG, Ahmad S, Malhotra BD (2010) Nanostructured iron oxide platform for impedimetric cholesterol detection. Electroanalysis 22(10):1045–1055

    Article  CAS  Google Scholar 

  73. Imran M, Ansari AR, Shaik AH, Hussain S, Khan A, Chandan MR (2018) Ferrofluid synthesis using oleic acid coated Fe3O4 nanoparticles dispersed in mineral oil for heat transfer applications. Mater Res Exp 5(3):036108

    Article  CAS  Google Scholar 

  74. Imran M, Shaik AH, Ansari AR, Aziz A, Hussain S, Abouatiaa AF, Khan A, Chandan MR (2018) Synthesis of highly stable γ-Fe2O3 ferrofluid dispersed in liquid paraffin, motor oil and sunflower oil for heat transfer applications. RSC Adv 8(25):13970–13975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Riaz S, Naseem S (2015) Controlled nanostructuring of TiO2 nanoparticles: a sol-gel approach. J Sol-Gel Sci Technol 74:299–309

    Article  CAS  Google Scholar 

  76. Solanki PR, Kaushik A, Ansari AA, Tiwari A, Malhotra BD (2009) Multi-walled carbon nanotubes/sol–gel-derived silica/chitosan nanobiocomposite for total cholesterol sensor. Sensors Actuators B Chem 137(2):727–735

    Article  CAS  Google Scholar 

  77. Solanki PR, Kaushik A, Ansari AA, Malhotra BD (2009) Nanostructured zinc oxide platform for cholesterol sensor. Appl Phys Lett 94(14):143901

    Article  CAS  Google Scholar 

  78. Kaushik A, Solanki PR, Ansari AA, Ahmad S, Malhotra BD (2009) A nanostructured cerium oxide film-based immunosensor for mycotoxin detection. Nanotechnology 20(5):055105

    Article  PubMed  CAS  Google Scholar 

  79. Ansari AA, Kaushik A, Solanki PR, Malhotra BD (2010) Nanostructured zinc oxide platform for mycotoxin detection. Bioelectrochemistry 77(2):75–81

    Article  CAS  PubMed  Google Scholar 

  80. Ansari AA, Kaushik A, Solanki PR, Malhotra BE (2009) Electrochemical cholesterol sensor based on tin oxide-chitosan nanobiocomposite film. Electroanalysis 21(8):965–972

    Article  CAS  Google Scholar 

  81. Solanki PR, Dhand C, Kaushik A, Ansari AA, Sood KN, Malhotra BD (2009) Nanostructured cerium oxide film for triglyceride sensor. Sensors Actuators B Chem 141(2):551–556

    Article  CAS  Google Scholar 

  82. Solanki PR, Kaushik A, Chavhan PM, Maheshwari SN, Malhotra BD (2009) Nanostructured zirconium oxide based genosensor for Escherichia coli detection. Electrochem Commun 11(12):2272–2277

    Article  CAS  Google Scholar 

  83. Sayilkan F, Erdemoglu S, Asilturk M, Akarsu M, Sener S, Sayilkan H, Erdemogl M, Mater EA (2006) Photocatalytic performance of pure anatase nanocrystallite TiO2 sythesized under low temperature hydrothermal conditions. Res Bull 41:2276–2285

    Article  CAS  Google Scholar 

  84. Yu JG, Wang GH, Cheng B, Zhou MH (2007) Effects of hydrothermal temperature and time on the photocatalytic and microstructures of bimodal mesoporous TiO2 powders. Appl Catal B 69:171–180

    Article  CAS  Google Scholar 

  85. Rooymans JM (1972) In: Hagenmuller P (ed) Preparative methods in solid state chemistry. Academic Press, New York

    Google Scholar 

  86. Asiltürk M, Sayilkan F, Erdemoglu S, Akarsu M, Sayilkan H, Erdemoglu M, Arpac E (2006) J Hazard Mater 129:164–170

    Article  PubMed  CAS  Google Scholar 

  87. Pineda-Reyes AM, M de la Olvera L (2018) Synthesis of ZnO nanoparticles from water-in-oil (w/o) microemulsions. Mater Chem Phys 203:141–147

    Article  CAS  Google Scholar 

  88. Yalçınöz Ş, Erçelebi E (2018) Potential applications of nano-emulsions in the food systems: an update. Mater Res Exp 5(6):062001

    Article  CAS  Google Scholar 

  89. Asgari S, Saberi AH, McClements DJ, Lin M (2019) Microemulsions as nanoreactors for synthesis of biopolymer nanoparticles. Trends Food Sci Technol 86:118–130

    Article  CAS  Google Scholar 

  90. Ahmad T, Wani IA, Al-Hartomy OA, Al-Shihri AS, Kalam A (2015) Low temperature chemical synthesis and comparative studies of silver oxide nanoparticles. J Mol Struct 1084:9–15

    Article  CAS  Google Scholar 

  91. Suriati G, Mariatti M, Azizan A (2014) Synthesis of silver nanoparticles by chemical reduction method: effect of reducing agent and surfactant concentration. Int J Automot Mech Eng 10:1920

    Article  CAS  Google Scholar 

  92. Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298(5601):2176–2179

    Article  CAS  PubMed  Google Scholar 

  93. Petcharoen K, Sirivat A (2012) Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Mater Sci Eng B 177(5):421–427

    Article  CAS  Google Scholar 

  94. Liu X, Kaminski MD, Guan Y, Chen H, Lui HAJ (2006) Preparation and characterization of hydrophobic superparamagnetic magnetic gel. J Magn Magn Mater 306:248–253

    Article  CAS  Google Scholar 

  95. Sun S, Zeng H, J. (2002) Size controlled synthesis of magnetite nanoparticles. Am Chem Soc 124:8204–8205

    Article  CAS  Google Scholar 

  96. Unal B, Durmus Z, Kavas H, Baykal A, Toprak MS (2010) Synthesis, conductivity and dielectric characterization of salicylic acid- Fe3O4 nanocomposite. Mater Chem Phys 123:184–190

    Article  CAS  Google Scholar 

  97. Uchiyama H, Bando T, Kozuka H (2019) Effect of the amount of H2O and HNO3 in Ti(OC3H7i)(4) solutions on the crystallization of sol-gel-derived TiO2 films. Thin Solid Films 669:157–161

    Article  CAS  Google Scholar 

  98. Lopez AJ, Urena A, Rams J (2011) Wear resistant coatings; Silica sol-gel reinforced with carbon nanotubes. Thin Solid Films 519:7904–7910

    Article  CAS  Google Scholar 

  99. Poienar M, Martin C, Lebedev OI, Maignan A (2018) Advantage of low-temperature hydrothermal synthesis to grow stoichiometric crednerite crystals. Solid State Sci 80:39–45

    Article  CAS  Google Scholar 

  100. Galanzha EI, Shashkov EV, Kelly T, Kim JW, Yang L, Zharov VP (2009) In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells. Nat Nanotechnol 4:855–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Colon J, Herrera L, Smith J, Patil S, Komanski C, Kupelian P, Seal S, Jenkins DW, Baker CH (2009) Protection from radiation-induced pneumonitis using cerium oxide nanoparticles. Nanomedicine 5:225–231

    Article  CAS  PubMed  Google Scholar 

  102. Tarnuzzer RW, Colon J, Patil S, Seal S (2005) Vacancy engineered ceria nanostructures for protection from radiation-induced cellular damage. Nano Lett 5:2573–2577

    Article  CAS  PubMed  Google Scholar 

  103. Bhattacharyya S, Kudgus RA, Bhattacharya R, Mukherjee P (2011) Inorganic nanoparticles in cancer therapy. Pharm Res 28(2):237–259

    Article  CAS  PubMed  Google Scholar 

  104. Mukherjee P, Bhattacharya R, Wang P, Wang L, Basu S, Nagy JA, Atala A, Mukhopadhyay D, Soker S (2005) Antiangiogenic properties of gold nanoparticles. Clin Cancer Res 11:3530–3534

    Article  CAS  PubMed  Google Scholar 

  105. Patra CR, Bhattacharya R, Mukhopadhyay D, Mukherjee P (2008) Application of gold nanoparticles for targeted therapy in cancer. J Biomed Nanotechnol 4:99–132

    Article  CAS  Google Scholar 

  106. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751–760

    Article  CAS  PubMed  Google Scholar 

  107. Patra CR, Bhattacharya R, Wang E, Katarya A, Lau JS, Dutta S, Muders M, Wang S, Buhrow SA, Safgren SL, Yaszemski MJ, Reid JM, Ames MM, Mukherjee P, Mukhopadhyay D (2008) Targeted delivery of gemcitabine to pancreatic adenocarcinoma using cetuximab as a targeting agent. Cancer Res 68:1970–1978

    Article  CAS  PubMed  Google Scholar 

  108. Toffoli G, Cernigoi C, Russo A, Gallo A, Bagnoli M, Boiocchi M (1997) Overexpression of folate binding protein in ovarian cancers. Int J Cancer 74:193–198

    Article  CAS  PubMed  Google Scholar 

  109. Coney LR, Tomassetti A, Carayannopoulos L, Frasca V, Kamen BA, Colnaghi MI, Zurawski VR Jr (1991) Cloning of a tumor-associated antigen: MOv18 and MOv19 antibodies recognize a folate binding protein. Cancer Res 51:6125–6132

    CAS  PubMed  Google Scholar 

  110. Elnakatand M, Ratnam H (2004) Distribution, functionality and gene regulation of folate receptor isoforms: implications in targeted therapy. Adv Drug Deliv Rev 56:1067–1084

    Article  CAS  Google Scholar 

  111. Kamenand AK, Smith BA (2004) A review of folate receptor alpha cycling and 5-methyltetrahydrofolate accumulation with an emphasis on cell models in vitro. Adv Drug Deliv Rev 56:1085–1097

    Article  CAS  Google Scholar 

  112. Revia RA, Zhang M (2016) Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: Recent advances. Mater Today 19:157–168

    Article  CAS  Google Scholar 

  113. Kaushik A, Jayant RD, Sagar V, Nair M (2014) The potential of magneto-electric nanocarriers for drug delivery. Expert Opin Drug Deliv 11:1635–1646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Shubayev VI, Pisanic TR 2nd, Jin S (2009) Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev 61:467–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Arbab AS, Liu W, Frank JA (2006) Cellular magnetic resonance imaging: current status and future prospects. Expert Rev Med Devices 3:427–439

    Article  CAS  PubMed  Google Scholar 

  116. McCarthy JR, Kelly KA, Sun EY, Weissleder R (2007) Targeted delivery of multifunctional magnetic nanoparticles. Nanomedicine 2:153–167

    Article  CAS  PubMed  Google Scholar 

  117. Gao X, Cui Y, Levenson RM, Chung LWK, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–976

    Article  CAS  PubMed  Google Scholar 

  118. Pardridge WM (2005) The blood-brain barrier: bottleneck in brain drug development. NeuroRx 2(1):3–14

    Article  PubMed  PubMed Central  Google Scholar 

  119. Wen R, Banik B, Pathak RK, Kumar A, Kolishetti N, Dhar S (2016) Nanotechnology-inspired tools for mitochondrial dysfunction related diseases. Adv Drug Deliv Rev 99:52–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wen R, Umeano AC, Kou Y, Xu J, Farooqi AA (2019) Nanoparticle systems for cancer vaccine. Nanomedicine 14(5):627–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Pardoll DM (1998) Cancer vaccines. Nat Med 4:525–531

    Article  CAS  PubMed  Google Scholar 

  122. Finn OJ (2003) Cancer vaccines: between the idea and the reality. Nat Rev Immunol 3:630–641

    Article  CAS  PubMed  Google Scholar 

  123. Li H, Li Y, Jiao J, Hu HM (2011) Alpha-alumina nanoparticles induce efficient autophagy-dependent cross-presentation and potent antitumour response. Nat Nanotechnol 6(10):645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Chiang C-S, Lin Y-J, Lee R, Lai Y-H, Cheng H-W, Hsieh C-H, Shyu W-C, Chen S-Y (2018) Combination of fucoidan-based magnetic nanoparticles and immunomodulators enhances tumour-localized immunotherapy. Nat Nanotechnol 13(8):746

    Article  CAS  PubMed  Google Scholar 

  125. Shao K, Singha S, Clemente-Casares X, Tsai S, Yang Y, Santamaria P (2015) Nanoparticle based immunotherapy for cancer. ACS Nano 9(1):16–30. https://doi.org/10.1021/nn5062029

    Article  CAS  PubMed  Google Scholar 

  126. Gao H, Yang Z, Zhang S, Cao S, Shen S, Pang Z, Jiang X (2013) Ligand modified nanoparticles increases cell uptake, alters endocytosis and elevates glioma distribution and internalization. Sci Rep 3:2534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kuang Y, An S, Guo Y, Huang S, Shao K, Yang L, Li J, Ma H, Jiang C (2013) T7 peptide-functionalized nanoparticles utilizing RNA interference for glioma dual targeting. Int J Pharm 454(1):11–20

    Article  CAS  PubMed  Google Scholar 

  128. Bonnemain B (1998) Superparamagnetic agents in magnetic resonance imaging: physicochemical characteristics and clinical applications—a review. J Drug Target 6:167–174

    Article  CAS  PubMed  Google Scholar 

  129. Enochs WS, Harsh G, Hochberg F, Weissleder R (1999) Improved delineation of human brain tumors on MR images using long-circulating, superparamagnetic iron oxide agent. J Magn Reson Imaging 9:228–232

    Article  CAS  PubMed  Google Scholar 

  130. Yamaguchi H, Tsuchimochi M, Hayama K, Kawase T, Tsubokawa N (2016) Dual-labeled near-infrared/99mTc imaging probes using PAMAM-coated silica nanoparticles for the imaging of HER2-expressing cancer cells. Int J Mol Sci 17(7):1086

    Article  PubMed Central  CAS  Google Scholar 

  131. Park JY, Baek MJ, Choi ES et al (2009) Paramagnetic ultrasmall gadolinium oxide nanoparticles as advanced T1 MRI contrast agent: account for large longitudinal relaxivity, optimal particle diameter, and in vivo T1 MR images. ACS Nano 3(11):3663–3669

    Article  CAS  PubMed  Google Scholar 

  132. Bao G, Mitragotri S, Tong S (2013) Multifunctional nanoparticles for drug delivery and molecular imaging. Annu Rev Biomed Eng 15:253–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Füzéry AK, Levin J, Chan MM, Chan DW (2013) Translation of proteomic biomarkers into FDA approved cancer diagnostics: issues and challenges. Clin Proteomics 10:13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Ye F, Zhao Y, El-Sayed R, Muhammed M, Hassan M (2018) Advances in nanotechnology for cancer biomarkers. Nano Today 18:103–123

    Article  CAS  Google Scholar 

  135. Kosaka PM, Pini V, Ruz JJ, da Silva RA, González MU, Ramos D, Calleja M, Tamayo J (2014) Detection of cancer biomarkers in serum using a hybrid mechanical and optoplasmonic nanosensor. Nat Nanotechnol 9:1047–1053

    Google Scholar 

  136. Yu MK, Park J, Jon S (2012) Targeting strategies for multifunctional nanoparticles in cancer. Theranostics 2:3–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Chinen AB, Guan CM, Ferrer JR, Barnaby SN, Merkel TJ, Mirkin CA (2015) Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem Rev 115:10530–10574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Chen G, Roy I, Yang C, Prasad PN (2016) Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chem Rev 116:2826–2885

    Article  CAS  PubMed  Google Scholar 

  139. Kaasgaard T, Andresen TL (2010) Liposomal cancer therapy: exploiting tumor characteristics. Expert Opin Drug Deliv 7:225–243

    Article  CAS  PubMed  Google Scholar 

  140. Astruc D, Boisselier E, Ornelas C (2010) Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem Rev 110:1857–1959

    Article  CAS  PubMed  Google Scholar 

  141. Dreaden EC, Mackey MA, Huang X, Kang B, El-Sayed MA (2011) Beating cancer in multiple ways using nanogold. Chem Soc Rev 40:3391–3404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Duncan R (2006) Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 6:688–701

    Article  CAS  PubMed  Google Scholar 

  143. Sokolov K, Follen M, Aaron J, Pavlova I, Malpica A, Lotan R, Richards-Kortum R (2003) Real-time vital optical imaging of Precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res 63:1999–2004

    CAS  PubMed  Google Scholar 

  144. Maruo T, Yamasaki M, Ladines-Llave CA, Mochizuki M (1992) Immunohistochemical demonstration of elevated expression of epidermal growth factor receptor in the neoplastic changes of cervical squamous epithelium. Cancer 69:1182–1187

    Article  CAS  PubMed  Google Scholar 

  145. Dixit V, Van Den Bossche J, Sherman DM, Thompson DH, Andres RP (2006) Synthesis and grafting of thioctic acid-PEG-folate conjugates onto au nanoparticles for selective targeting of folate receptor-positive tumor cells. Bioconjug Chem 17:603–609

    Article  CAS  PubMed  Google Scholar 

  146. Gupta AK, Naregalkar RR, Vaidya VD, Gupta M (2007) Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine 2:23–39

    Article  CAS  PubMed  Google Scholar 

  147. Lu AH, Salabas EL, Schuth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244

    Article  CAS  Google Scholar 

  148. Clement O, Siauve N, Cuenod CA, Frija G (1998) Liver imaging with ferumoxides (Feridex): fundamentals, controversies, and practical aspects. Top Magn Reson Imaging 9:167–182

    Article  CAS  PubMed  Google Scholar 

  149. Alexiou C, Arnold W, Klein RJ, Parak FG, Hulin P et al (2000) Locoregional cancer treatment with magnetic drug targeting. Cancer Res 60:6641–6648

    CAS  PubMed  Google Scholar 

  150. Larson DR, Ow H, Vishwasrao HD, Heikal AA, Wiesner U, Webb WW (2008) Silica nanoparticles architecture determines radiative properties of encapsulated fluorophores. Chem Mater 20:2677–2684

    Article  CAS  Google Scholar 

  151. AshaRani PV, Mun GLK, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3:279–290

    Article  CAS  PubMed  Google Scholar 

  152. Thevenot P, Cho J, Wavhal D, Timmons RB, Tang L (2008) Surface chemistry influences cancer killing effect of TiO2 nanoparticles. Nanomedicine 4:226–236

    Article  CAS  PubMed  Google Scholar 

  153. Heppner GH (1984) Tumor heterogeneity. Cancer Res 44:2259–2265

    CAS  PubMed  Google Scholar 

  154. Jain RK (1999) Transport of molecules, particles, and cells in solid tumors. Annu Rev Biomed Eng 1:241–263

    Article  CAS  PubMed  Google Scholar 

  155. Jainand TP, Padera RK (2003) Development. Lymphatics make the break. Science 299:209–210

    Article  Google Scholar 

  156. Koo OM, Rubinstein I, Onyuksel H (2005) Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomedicine 1:193–212

    Article  CAS  PubMed  Google Scholar 

  157. Davis ME, Chen Z, Shin DM (2008) Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat Rev Drug Discov 7:771–782

    Article  CAS  PubMed  Google Scholar 

  158. Saraiva C, Praça C, Ferreira R, Santos T, Ferreira L, Bernardino L (2016) Nanoparticle-mediated brain drug delivery: overcoming blood–brain barrier to treat neurodegenerative diseases. J Control Release 235:34–47

    Article  CAS  PubMed  Google Scholar 

  159. Arami H, Khandhar A, Liggitt D, Krishnan KM (2015) In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem Soc Rev 44:8576–8607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Wang F, Li C, Cheng J, Yuan Z (2016) Recent advances on inorganic nanoparticle-based cancer therapeutic agents. Int J Environ Res Public Health 13(12):1182

    Article  PubMed Central  CAS  Google Scholar 

  161. Meyers JD, Doane T, Burda C, Basilion JP (2013) Nanoparticles for imaging and treating brain cancer. Nanomedicine 8(1):123–143

    Article  CAS  PubMed  Google Scholar 

  162. Kaushik A, Jayant RD, Bhardwaj V, Nair M (2018) Personalized nanomedicine for CNS diseases. Drug Discov Today 23:1007–1015

    Article  CAS  PubMed  Google Scholar 

  163. Vashist A, Kaushik A, Vashist A, Sagar V, Ghosal A, Gupta YK, Ahmad S, Nair M (2018) Advances in carbon nanotubes–hydrogel hybrids in nanomedicine for therapeutics. Adv Healthc Mater 7:1701213

    Article  CAS  Google Scholar 

  164. Vashist A, Kaushik A, Ghosal A, Bala J, Nikkhah-Moshaie R, Wani WA, Manickam P, Nair M (2018) Nanocomposite hydrogels: advances in nanofillers used for nanomedicine. Gels 4:75

    Article  CAS  PubMed Central  Google Scholar 

  165. Kaushik A, Jayant RD, Nair M (2016) Advancements in nano-enabled therapeutics for neuroHIV management. Int J Nanomedicine 11:4317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Nair M, Jayant RD, Kaushik A, Sagar V (2016) Getting into the brain: potential of nanotechnology in the management of NeuroAIDS. Adv Drug Deliv Rev 103:202–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Kaushik A, Jayant RD, Nair M (2017) Advances in personalized Nanotherapeutics. Springer International Publishing, New York

    Book  Google Scholar 

  168. Vashist A, Kaushik A, Vashist A, Bala J, Nikkhah-Moshaie R, Sagar V, Nair M (2018) Nanogels as potential drug nanocarriers for CNS drug delivery. Drug Discov Today 23:1436–1443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Kaushik A, Jayant RD, Nair M (2018) Nanomedicine for neuroHIV/AIDS management. Nanomedicine 13:669–673

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors do acknowledge respective department and institution for providing resources and facilities.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Imran, M., Ahmed, A.A.A., Kateb, B., Kaushik, A. (2021). Inorganic Nanostructures for Brain Tumor Management. In: Agrahari, V., Kim, A., Agrahari, V. (eds) Nanotherapy for Brain Tumor Drug Delivery. Neuromethods, vol 163. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1052-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1052-7_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1051-0

  • Online ISBN: 978-1-0716-1052-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics