Skip to main content

Measurements of Exocytosis by Capacitance Recordings and Calcium Uncaging in Mouse Adrenal Chromaffin Cells

  • Protocol
  • First Online:
Exocytosis and Endocytosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2233))

Abstract

Fusion of vesicles with the plasma membrane and liberation of their contents is a multistep process involving several proteins. Correctly assigning the role of specific proteins and reactions in this cascade requires a measurement method with high temporal resolution. Patch-clamp recordings of cell membrane capacitance in combination with calcium measurements, calcium uncaging, and carbon-fiber amperometry allow for the accurate determination of vesicle pool sizes, their fusion kinetics, and their secreted oxidizable content. Here, we will describe this method in a model system for neurosecretion, the adrenal chromaffin cells, which secrete adrenaline.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sorensen JB (2004) Formation, stabilisation and fusion of the readily releasable pool of secretory vesicles. Pflugers Archiv 448:347–362

    Article  CAS  PubMed  Google Scholar 

  2. Verhage M, Sorensen JB (2008) Vesicle docking in regulated exocytosis. Traffic 9:1414–1424

    Article  CAS  PubMed  Google Scholar 

  3. Neher E (2018) Neurosecretion: what can we learn from chromaffin cells. Pflugers Archiv 470:7–11

    Article  CAS  PubMed  Google Scholar 

  4. Rettig J, Neher E (2002) Emerging roles of presynaptic proteins in Ca++-triggered exocytosis. Science 298:781–785

    Article  CAS  PubMed  Google Scholar 

  5. Marengo FD, Cardenas AM (2018) How does the stimulus define exocytosis in adrenal chromaffin cells? Pflugers Arch 470:155–167

    Article  CAS  PubMed  Google Scholar 

  6. Dhara M, Mohrmann R, Bruns D (2018) v-SNARE function in chromaffin cells. Pflugers Arch 470:169–180

    Article  CAS  PubMed  Google Scholar 

  7. Stevens DR, Schirra C, Becherer U, Rettig J (2011) Vesicle pools: lessons from adrenal chromaffin cells. Front Synaptic Neurosci 3:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bader MF, Holz RW, Kumakura K, Vitale N (2002) Exocytosis: the chromaffin cell as a model system. Ann N Y Acad Sci 971:178–183

    Article  CAS  PubMed  Google Scholar 

  9. Steyer JA, Horstmann H, Almers W (1997) Transport, docking and exocytosis of single secretory granules in live chromaffin cells. Nature 388:474–478

    Article  CAS  PubMed  Google Scholar 

  10. Sorensen JB, Nagy G, Varoqueaux F, Nehring RB, Brose N, Wilson MC, Neher E (2003) Differential control of the releasable vesicle pools by SNAP-25 splice variants and SNAP-23. Cell 114:75–86

    Article  CAS  PubMed  Google Scholar 

  11. Borisovska M, Zhao Y, Tsytsyura Y, Glyvuk N, Takamori S, Matti U, Rettig J, Sudhof T, Bruns D (2005) v-SNAREs control exocytosis of vesicles from priming to fusion. EMBO J 24:2114–2126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Voets T, Moser T, Lund PE, Chow RH, Geppert M, Sudhof TC, Neher E (2001) Intracellular calcium dependence of large dense-core vesicle exocytosis in the absence of synaptotagmin I. Proc Natl Acad Sci U S A 98:11680–11685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Voets T, Toonen RF, Brian EC, de Wit H, Moser T, Rettig J, Sudhof TC, Neher E, Verhage M (2001) Munc18-1 promotes large dense-core vesicle docking. Neuron 31:581–591

    Article  CAS  PubMed  Google Scholar 

  14. Schonn JS, Maximov A, Lao Y, Sudhof TC, Sorensen JB (2008) Synaptotagmin-1 and -7 are functionally overlapping Ca2+ sensors for exocytosis in adrenal chromaffin cells. Proc Natl Acad Sci U S A 105:3998–4003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu Y, Schirra C, Stevens DR, Matti U, Speidel D, Hof D, Bruns D, Brose N, Rettig J (2008) CAPS facilitates filling of the rapidly releasable pool of large dense-core vesicles. J Neurosci 28:5594–5601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Speidel D, Bruederle CE, Enk C, Voets T, Varoqueaux F, Reim K, Becherer U, Fornai F, Ruggieri S, Holighaus Y, Weihe E, Bruns D, Brose N, Rettig J (2005) CAPS1 regulates catecholamine loading of large dense-core vesicles. Neuron 46:75–88

    Article  CAS  PubMed  Google Scholar 

  17. Man KN, Imig C, Walter AM, Pinheiro PS, Stevens DR, Rettig J, Sorensen JB, Cooper BH, Brose N, Wojcik SM (2015) Identification of a Munc13-sensitive step in chromaffin cell large dense-core vesicle exocytosis. eLife 4:e10635

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ashery U, Varoqueaux F, Voets T, Betz A, Thakur P, Koch H, Neher E, Brose N, Rettig J (2000) Munc13-1 acts as a priming factor for large dense-core vesicles in bovine chromaffin cells. EMBO J 19:3586–3596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cai H, Reim K, Varoqueaux F, Tapechum S, Hill K, Sorensen JB, Brose N, Chow RH (2008) Complexin II plays a positive role in Ca2+-triggered exocytosis by facilitating vesicle priming. Proc Natl Acad Sci U S A 105:19538–19543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vitale ML, Seward EP, Trifaro JM (1995) Chromaffin cell cortical actin network dynamics control the size of the release-ready vesicle pool and the initial rate of exocytosis. Neuron 14:353–363

    Article  CAS  PubMed  Google Scholar 

  21. Houy S, Groffen AJ, Ziomkiewicz I, Verhage M, Pinheiro PS, Sorensen JB (2017) Doc2B acts as a calcium sensor for vesicle priming requiring synaptotagmin-1, Munc13-2 and SNAREs. eLife 6:e27000

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sorensen JB, Wiederhold K, Muller EM, Milosevic I, Nagy G, de Groot BL, Grubmuller H, Fasshauer D (2006) Sequential N- to C-terminal SNARE complex assembly drives priming and fusion of secretory vesicles. EMBO J 25:955–966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mohrmann R, de Wit H, Verhage M, Neher E, Sorensen JB (2010) Fast vesicle fusion in living cells requires at least three SNARE complexes. Science 330:502–505

    Article  CAS  PubMed  Google Scholar 

  24. Shaaban A, Dhara M, Frisch W, Harb A, Shaib AH, Becherer U, Bruns D, Mohrmann R (2019) The SNAP-25 linker supports fusion intermediates by local lipid interactions. eLife 8:e41720

    Article  PubMed  PubMed Central  Google Scholar 

  25. Makke M, Mantero Martinez M, Gaya S, Schwarz Y, Frisch W, Silva-Bermudez L, Jung M, Mohrmann R, Dhara M, Bruns D (2018) A mechanism for exocytotic arrest by the Complexin C-terminus. eLife 7:e38981

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mohrmann R, de Wit H, Connell E, Pinheiro PS, Leese C, Bruns D, Davletov B, Verhage M, Sorensen JB (2013) Synaptotagmin interaction with SNAP-25 governs vesicle docking, priming, and fusion triggering. J Neurosci 33:14417–14430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Angleson JK, Betz WJ (1997) Monitoring secretion in real time: capacitance, amperometry and fluorescence compared. Trends Neurosci 20:281–287

    Article  CAS  PubMed  Google Scholar 

  28. Khvotchev M, Kavalali ET (2008) Pharmacology of neurotransmitter release: measuring exocytosis. Handb Exp Pharmacol 184:23–43

    Article  CAS  Google Scholar 

  29. Neher E, Marty A (1982) Discrete changes of cell-membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc Natl Acad Sci U S A 79:6712–6716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Borges R, Camacho M, Gillis KD (2008) Measuring secretion in chromaffin cells using electrophysiological and electrochemical methods. Acta Physiol 192:173–184

    Article  CAS  Google Scholar 

  31. Lindau M, Neher E (1988) Patch-clamp techniques for time-resolved capacitance measurements in single cells. Pflugers Arch 411:137–146

    Article  CAS  PubMed  Google Scholar 

  32. Gillis KD (1995) Techniques for membrane capacitance measurements. In: Sakmann B, Neher E (eds) Single-channel recording, 2nd edn. Plenum Press, New York, pp 155–198

    Chapter  Google Scholar 

  33. Segev A, Garcia-Oscos F, Kourrich S (2016) Whole-cell patch-clamp recordings in brain slices. J Vis Exp 112:54024

    Google Scholar 

  34. Conforti L (2012). Chapter 20: patch-clamp technique. In: Sperelakis N (ed) Cell physiology source book, 4th edn. Academic, Cambridge

    Google Scholar 

  35. Heinemann C, Chow RH, Neher E, Zucker RS (1994) Kinetics of the secretory response in bovine chromaffin cells following flash photolysis of caged Ca2+. Biophys J 67:2546–2557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ellis-Davies GC, Kaplan JH (1994) Nitrophenyl-EGTA, a photolabile chelator that selectively binds Ca2+ with high affinity and releases it rapidly upon photolysis. Proc Natl Acad Sci U S A 91:187–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Voets T (2000) Dissection of three Ca2+-dependent steps leading to secretion in chromaffin cells from mouse adrenal slices. Neuron 28:537–545

    Article  CAS  PubMed  Google Scholar 

  38. Sorensen JB, Matti U, Wei SH, Nehring RB, Voets T, Ashery U, Binz T, Neher E, Rettig J (2002) The SNARE protein SNAP-25 is linked to fast calcium triggering of exocytosis. Proc Natl Acad Sci U S A 99:1627–1632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wightman RM, Jankowski JA, Kennedy RT, Kawagoe KT, Schroeder TJ, Leszczyszyn DJ, Near JA, Diliberto EJ Jr, Viveros OH (1991) Temporally resolved catecholamine spikes correspond to single vesicle release from individual chromaffin cells. Proc Natl Acad Sci U S A 88:10754–10758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chow RH, von Ruden L, Neher E (1992) Delay in vesicle fusion revealed by electrochemical monitoring of single secretory events in adrenal chromaffin cells. Nature 356:60–63

    Article  CAS  PubMed  Google Scholar 

  41. Fathali H, Cans AS (2018) Amperometry methods for monitoring vesicular quantal size and regulation of exocytosis release. Pflugers Archiv 470:125–134

    Article  CAS  PubMed  Google Scholar 

  42. Mosharov EV, Sulzer D (2005) Analysis of exocytotic events recorded by amperometry. Nat Methods 2:651–658

    Article  CAS  PubMed  Google Scholar 

  43. Bruns D (2004) Detection of transmitter release with carbon fiber electrodes. Methods 33:312–321

    Article  CAS  PubMed  Google Scholar 

  44. Chow RH, Rüden L (1995) Electrochemical detection of secretion from single cells. In: Sakmann B, Neher E (eds) Single-channel recording, 2nd edn. Plenum Press, New York

    Google Scholar 

  45. Penner R (1995) A practical guide to patch clamping. In: Sakmann B, Neher E (eds) Single-channel recording, 2nd edn. Plenum Press, New York

    Google Scholar 

  46. Lindau M, Neher E (1988) Patch-clamp techniques for time-resolved capacitance measurements in single cells. Pflugers Archiv 411:137–146

    Article  CAS  PubMed  Google Scholar 

  47. Chen P, Gillis KD (2000) The noise of membrane capacitance measurements in the whole-cell recording configuration. Biophys J 79:2162–2170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Horrigan FT, Bookman RJ (1994) Releasable pools and the kinetics of exocytosis in adrenal chromaffin cells. Neuron 13:1119–1129

    Article  CAS  PubMed  Google Scholar 

  49. Voets T, Neher E, Moser T (1999) Mechanisms underlying phasic and sustained secretion in chromaffin cells from mouse adrenal slices. Neuron 23:607–615

    Article  CAS  PubMed  Google Scholar 

  50. Yang Y, Gillis KD (2004) A highly Ca2+-sensitive pool of granules is regulated by glucose and protein kinases in insulin-secreting INS-1 cells. J Gen Physiol 124:641–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ellis-Davies GC (2008) Neurobiology with caged calcium. Chem Rev 108:1603–1613

    Article  CAS  PubMed  Google Scholar 

  52. Xu T, Binz T, Niemann H, Neher E (1998) Multiple kinetic components of exocytosis distinguished by neurotoxin sensitivity. Nat Neurosci 1:192–200

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob Balslev Sørensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Houy, S., Martins, J.S., Mohrmann, R., Sørensen, J.B. (2021). Measurements of Exocytosis by Capacitance Recordings and Calcium Uncaging in Mouse Adrenal Chromaffin Cells. In: Niedergang, F., Vitale, N., Gasman, S. (eds) Exocytosis and Endocytosis. Methods in Molecular Biology, vol 2233. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1044-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1044-2_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1043-5

  • Online ISBN: 978-1-0716-1044-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics