Skip to main content

The Application of Flow Cytometry for Estimating Genome Size, Ploidy Level Endopolyploidy, and Reproductive Modes in Plants

  • Protocol
  • First Online:
Molecular Plant Taxonomy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2222))

Abstract

Over the years, the amount of DNA in a nucleus (genome size) has been estimated using a variety of methods, but increasingly, flow cytometry (FCM) has become the method of choice. The popularity of this technique lies in the ease of sample preparation and in the large number of particles (i.e., nuclei) that can be analyzed in a very short period of time. This chapter presents a step-by-step guide to estimating the nuclear DNA content of plant nuclei using FCM. Attempting to serve as a tool for daily laboratory practice, we list, in detail, the equipment required, specific reagents and buffers needed, as well as the most frequently used protocols to carry out nuclei isolation. In addition, solutions to the most common problems that users may encounter when working with plant material and troubleshooting advice are provided. Finally, information about the correct terminology to use and the importance of obtaining chromosome counts to avoid cytological misinterpretations of the FCM data are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Doležel J, Bartoš J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytometry A 51A:127–128

    Article  Google Scholar 

  2. Ogur M, Erickson RO, Rosen GU, Sax KB, Holden C (1951) Nucleic acids in relation to cell division in Lilium longiflorum. Exp Cell Res 2:73–89

    Article  CAS  Google Scholar 

  3. Leitch IJ, Johnston E, Pellicer J, Hidalgo O, Bennett MD. (2019) Plant DNA C-values database (release 7.1, April 2019). https://cvalues.science.kew.org/

  4. Pellicer J, Leitch IJ (2019) The plant DNA C-values database (release 7.1): an updated online repository of plant genome size data for comparative studies. New Phytologist 226(2):301–305. https://doi.org/10.1111/nph.16261

    Article  PubMed  Google Scholar 

  5. Loureiro J, Travnicek P, Rauchova J, Urfus T, Vit P, Stech M, Castro S, Suda J (2010) The use of flow cytometry in the biosystematics, ecology and population biology of homoploid plants. Preslia 82:3–21

    Google Scholar 

  6. Suda J, Kron P, Husband BC, Trávnícek P (2007) Flow cytometry and ploidy: applications in plant systematics, ecology and evolutionary biology. In: Doležel J, Greilhuber J, Suda J (eds) Flow cytometry with plants cells. Wiley-VCH, Weinheim, pp 103–130

    Chapter  Google Scholar 

  7. Dodsworth S, Leitch AR, Leitch IJ (2015) Genome size diversity in angiosperms and its influence on gene space. Curr Opin Genet Dev 35:73–78

    Article  CAS  PubMed  Google Scholar 

  8. Greilhuber J, Leitch IJ (2013) Genome size and the phenotype. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds) Plant genome diversity, vol 2, physical structure, behaviour and evolution of plant genomes. Springer-Verlag, Wien, pp 323–344

    Google Scholar 

  9. Guignard MS, Crawley MJ, Kovalenko D, Nichols RA, Trimmer M, Leitch AR, Leitch IJ (2019) Interactions between plant genome size, nutrients and herbivory by rabbits, molluscs and insects on a temperate grassland. Proc R Soc B Biol Sci 286:20182619

    Article  CAS  Google Scholar 

  10. Pellicer J, Hidalgo O, Dodsworth S, Leitch IJ (2018) Genome size diversity and its impact on the evolution of land plants. Genes 9:88

    Article  CAS  Google Scholar 

  11. Sliwinska E (2018) Flow cytometry – a modern method for exploring genome size and nuclear DNA synthesis in horticultural and medicinal plant species. Folia Hort 30:103

    Article  Google Scholar 

  12. Kreiner JM, Kron P, Husband BC (2017) Evolutionary dynamics of unreduced gametes. Trends Genet 33:583–593

    Article  CAS  PubMed  Google Scholar 

  13. Kron P, Husband BC (2012) Using flow cytometry to estimate pollen DNA content: improved methodology and applications. Ann Bot 110:1067–1078

    Article  CAS  PubMed  Google Scholar 

  14. Farhat P, Hidalgo O, Robert T, Siljak-Yakovlev S, Leitch IJ, Adams RP, Bou D-KM (2019) Polyploidy in the conifer genus Juniperus: an unexpectedly high rate. Front Plant Sci 10:676

    Article  PubMed  Google Scholar 

  15. Guignard MS, Nichols RA, Knell RJ, Macdonald A, Romila C-A, Trimmer M, Leitch IJ, Leitch AR (2016) Genome size and ploidy influence angiosperm species' biomass under nitrogen and phosphorus limitation. New Phytol 210:1195–1206

    Article  PubMed  Google Scholar 

  16. Doležel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2:2233–2244

    Article  PubMed  CAS  Google Scholar 

  17. Suda J, Krahulcova A, Travnicek P, Krahulec F (2006) Ploidy level versus DNA ploidy level: an appeal for consistent terminology. Taxon 55:447–450

    Article  Google Scholar 

  18. Kolář F, Čertner M, Suda J, Schönswetter P, Husband BC (2017) Mixed-ploidy species: Progress and opportunities in polyploid research. Trends Plant Sci 22:1041–1055

    Article  PubMed  CAS  Google Scholar 

  19. Husband BC, Baldwin SJ, Suda J (2013) The incidence of polyploidy in natural plant populations: major patterns and evolutionary processes. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds) Plant genome diversity, vol 2, physical structure, behaviour and evolution of plant genomes. Springer-Verlag, Wien, pp 255–276

    Google Scholar 

  20. Barkla BJ, Rhodes T, Tran K-NT, Wijesinghege C, Larkin JC, Dassanayake M (2018) Making epidermal bladder cells bigger: developmental- and salinity-induced endopolyploidy in a model halophyte. Plant Physiol 177:615–632

    Article  CAS  PubMed  Google Scholar 

  21. Leitch IJ, Dodsworth S (2017) Endopolyploidy in plants. eLS. https://doi.org/10.1002/9780470015902.a0020097.pub2

  22. Matzk F, Meister A, Schubert I (2000) An efficient screen for reproductive pathways using mature seeds of monocots and dicots. Plant J 21:97–108

    Article  CAS  PubMed  Google Scholar 

  23. Dobeš C, Lückl A, Hülber K, Paule J (2013) Prospects and limits of the flow cytometric seed screen--insights from Potentilla sensu lato (Potentilleae, Rosaceae). New Phytol 198:605–616

    Article  PubMed  CAS  Google Scholar 

  24. Hojsgaard D, Hörandl E (2019) The rise of apomixis in natural plant populations. Front Plant Sci 10:358

    Article  PubMed  Google Scholar 

  25. Schinkel CCF, Kirchheimer B, Dellinger AS, Klatt S, Winkler M, Dullinger S, Hörandl E (2016) Correlations of polyploidy and apomixis with elevation and associated environmental gradients in an alpine plant. AoB PLANTS 8:plw064

    Article  PubMed  Google Scholar 

  26. Noirot M, Barre P, Louarn J, Duperray C, Hamon S (2002) Consequences of stoichiometric error on nuclear DNA content evaluation in Coffea liberica var. dewevrei using DAPI and propidium iodide. Ann Bot 89:385–389

    Article  CAS  PubMed  Google Scholar 

  27. Noirot M, Barre P, Louarn J, Duperray C, Hamon S (2000) Nucleus-cytosol interactions - a source of stoichiometric error in flow cytometric estimation of nuclear DNA content in plants. Ann Bot 86:309–316

    Article  CAS  Google Scholar 

  28. Noirot M, Barre P, Duperray C, Louarn J, Hamon S (2003) Effects of caffeine and chlorogenic acid on propidium iodide accessibility to DNA: consequences on genome size evaluation in coffee tree. Ann Bot 92:259–264

    Article  CAS  PubMed  Google Scholar 

  29. Noirot M, Barre P, Duperray C, Hamon S, De Kochko A (2005) Investigation on the causes of stoichiometric error in genome size estimation using heat experiments. Consequences on data interpretation. Ann Bot 95:111–118

    Article  CAS  PubMed  Google Scholar 

  30. Price HJ, Hodnett G, Johnston JS (2000) Sunflower (Helianthus annuus) leaves contain compounds that reduce nuclear propidium iodide fluorescence. Ann Bot 86:929–934

    Article  CAS  Google Scholar 

  31. Bennett MD, Price HJ, Johnston JS (2008) Anthocyanin inhibits propidium iodide DNA fluorescence in Euphorbia pulcherrima: implications for genome size variation and flow cytometry. Ann Bot 101:777–790

    Article  PubMed  Google Scholar 

  32. Loureiro J, Rodriguez E, Doležel J, Santos C (2006) Flow cytometric and microscopic analysis of the effect of tannic acid on plant nuclei and estimation of DNA content. Ann Bot 98:515–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cires E, Cuesta C, Fernández MA, Nava HS, Vázquez VM, Fernández JA (2011) Isolation of plant nuclei suitable for flow cytometry from species with extremely mucilaginous compounds: an example in the genus Viola L. (Violaceae). An Jard Bot Madr 68:139–154

    Article  Google Scholar 

  34. Šmarda P, Knápek O, Březinová A, Horová L, Grulich V, Danihelka J, Veselý P, Šmerda J, Rotreklová O, Bures P (2019) Genome sizes and genomic guanine+cytosine (GC) contents of the Czech vascular flora with new estimates for 1700 species. Preslia 91:117–142

    Article  Google Scholar 

  35. Fernandez P, Gálvez F, Garcia S, Gras A, Hidalgo O, Pellicer J, Siljak-Yakovlev S, Vitales D, Vallès J. (2018) GSAD genome size in Asteraceae database (release 3.0, July 2019). http://asteraceaegenomesize.com/

  36. Garnatje T, Canela MÁ, Garcia S, Hidalgo O, Pellicer J, Sánchez-Jiménez I, Siljak-Yakovlev S, Vitales D, Vallès J (2011) GSAD: a genome size in the Asteraceae database. Cytometry A 79A:401–404

    Article  CAS  Google Scholar 

  37. Greilhuber J, Doležel J, Lysak MA, Bennett MD (2005) The origin, evolution and proposed stabilization of the terms 'Genome size' and 'C-value' to describe nuclear DNA contents. Ann Bot 95:255–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Rieseberg LH (2009) The frequency of polyploid speciation in vascular plants. Proc Natl Acad Sci U S A 106:13875–13879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Barker MS, Arrigo N, Baniaga AE, Li Z, Levin DA (2016) On the relative abundance of autopolyploids and allopolyploids. New Phytol 210:391–398

    Article  PubMed  Google Scholar 

  40. Trávníček P, Ponert J, Urfus T, Jersáková J, Vrána J, Hřibová E, Doležel J, Suda J (2015) Challenges of flow-cytometric estimation of nuclear genome size in orchids, a plant group with both whole-genome and progressively partial endoreplication. Cytometry A 87:958–966

    Article  PubMed  CAS  Google Scholar 

  41. Leitch IJ, Kahandawala I, Suda J, Hanson L, Ingrouille MJ, Chase MW, Fay MF (2009) Genome size diversity in orchids - consequences and evolution. Ann Bot 104:469–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pellicer J, Kelly LJ, Leitch IJ, Zomlefer WB, Fay MF (2014) A universe of dwarfs and giants: genome size and chromosome evolution in the monocot family Melanthiaceae. New Phytol 201:1484–1497

    Article  CAS  PubMed  Google Scholar 

  43. Torrell M, Vallès J (2001) Genome size in 21 Artemisia L. species (Asteraceae, anthemideae): systematic, evolutionary, and ecological implications. Genome 44:231–238

    Article  CAS  PubMed  Google Scholar 

  44. Garcia S, Sanz M, Garnatje T, Kreitschitz A, McArthur ED, Vallès J (2004) Variation of DNA amount in 47 populations of the subtribe Artemisiinae and related taxa (Asteraceae, anthemideae): karyological, ecological, and systematic implications. Genome 47:1004–1014

    Article  CAS  PubMed  Google Scholar 

  45. Leitch IJ, Bennett MD (2004) Genome downsizing in polyploid plants. Biol J Linn Soc 82:651–663

    Article  Google Scholar 

  46. Lysák MA, Lexer C (2006) Towards the era of comparative evolutionary genomics in Brassicaceae. Plant Syst Evol 259:175–198

    Article  CAS  Google Scholar 

  47. Poggio L, Burghardt AD, Hunziker JH (1989) Nuclear DNA variation in diploid and polyploid taxa of Larrea (Zygophyllaceae). Heredity 63:321–328

    Article  Google Scholar 

  48. Sliwinska E, Pisarczyk I, Pawlik A, Galbraith DW (2009) Measuring genome size of desert plants using dry seeds. Botany-Botanique 87:127–135

    Article  CAS  Google Scholar 

  49. Sliwinska E, Zielinska E, Jedrzejczyk I (2005) Are seeds suitable for flow cytometric estimation of plant genome size? Cytometry A 64A:72–79

    Article  Google Scholar 

  50. Wang N, McAllister HA, Bartlett PR, Buggs RJA (2016) Molecular phylogeny and genome size evolution of the genus Betula (Betulaceae). Ann Bot 117:1023–1035

    Article  PubMed  Google Scholar 

  51. Anamthawat-Jónsson K, Thórsson ÆT, Temsch EM, Greilhuber J (2010) Icelandic birch polyploids — the case of a perfect fit in genome size. J Bot 2010:347254, 9 pages

    Google Scholar 

  52. Suda J, Travnicek P (2006) Reliable DNA ploidy determination in dehydrated tissues of vascular plants by DAPI flow cytometry - new prospects for plant research. Cytometry A 69A:273–280

    Article  Google Scholar 

  53. Viruel J, Conejero M, Hidalgo O, Pokorny L, Powell RF, Forest F, Kantar MB, Soto Gomez M, Graham SW, Gravendeel B, Wilkin P, Leitch IJ (2019) A target capture-based method to estimate ploidy from herbarium specimens. Front Plant Sci 10:937

    Article  PubMed  Google Scholar 

  54. Kolář F, Lučanová M, Těšitel J, Loureiro J, Suda J (2012) Glycerol-treated nuclear suspensions - an efficient preservation method for flow cytometric analysis of plant samples. Chromosom Res 20:303–315

    Article  CAS  Google Scholar 

  55. Clarindo WR, Carvalho RC (2011) Flow cytometric analysis using SYBR green I for genome size estimation in coffee. Acta Histochem 113:221–225

    Article  CAS  Google Scholar 

  56. Loureiro J, Rodriguez E, Doležel J, Santos C (2007) Two new nuclear isolation buffers for plant DNA flow cytometry: a test with 37 species. Ann Bot 100:875–888

    Article  CAS  PubMed  Google Scholar 

  57. Otto F (1992) Preparation and staining of cells for high-resolution DNA analysis. In: Radbruch A (ed) Flow cytometry and cell sorting. Springer-Verlag, Berlin, pp 101–104

    Google Scholar 

  58. Barow M, Meister A (2003) Endopolyploidy in seed plants is differently correlated to systematics, organ, life strategy and genome size. Plant Cell Environ 26:571–584

    Article  Google Scholar 

  59. Doležel J, Binarova P, Lucretti S (1989) Analysis of nuclear DNA content in plant cells by flow cytometry. Biol Plant 31:113–120

    Article  Google Scholar 

  60. Pfosser M, Amon A, Lelley T, Heberlebors E (1995) Evaluation of sensitivity of flow-cytometry in detecting aneuploidy in wheat using disomic and ditelosomic wheat-rye addition lines. Cytometry 21:387–393

    Article  CAS  PubMed  Google Scholar 

  61. Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220:1049–1051

    Article  CAS  PubMed  Google Scholar 

  62. Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Report 9:208–218

    Article  CAS  Google Scholar 

  63. Bino RJ, Lanteri S, Verhoeven HA, Kraak HL (1993) Flow cytometric determination of nuclear replication stages in seed tissues. Ann Bot 72:181–187

    Article  Google Scholar 

  64. de Laat AMM, Blaas J (1984) Flow cytometric characterization and sorting of plant chromosomes. Theor Appl Genet 67:463–467

    Article  PubMed  Google Scholar 

  65. Ebihara A, Ishikawa H, Matsumoto S, Lin S-J, Iwatsuki K, Takamiya M, Watano Y, Ito M (2005) Nuclear DNA, chloroplast DNA, and ploidy analysis clarified biological complexity of the Vandenboschia radicans complex (Hymenophyllaceae) in Japan and adjacent areas. Am J Bot 92:1535–1547

    Article  CAS  PubMed  Google Scholar 

  66. Matzk F, Meister A, Brutovská R, Schubert I (2001) Reconstruction of reproductive diversity in Hypericum perforatum L. opens novel strategies to manage apomixis. Plant J 26:275–282

    Article  CAS  PubMed  Google Scholar 

  67. Bourge M, Brown SC, Siljak-Yakovlev S (2018) Flow cytometry as tool in plant sciences, with emphasis on genome size and ploidy level assessment. Genet Appl 2:1–12

    Google Scholar 

  68. Baranyi M, Greilhuber J (1995) Flow cytometric analysis of genome size variation in cultivated and wild Pisum sativum (Fabaceae). Plant Syst Evol 194:231–239

    Article  Google Scholar 

  69. Mishiba KI, Ando T, Mii M, Watanabe H, Kokubun H, Hashimoto G, Marchesi E (2000) Nuclear DNA content as an index character discriminating taxa in the genus Petunia sensu Jussieu (Solanaceae). Ann Bot 85:665–673

    Article  CAS  Google Scholar 

  70. Lee H-C, Lin T-Y (2005) Isolation of plant nuclei suitable for flow cytometry from recalcitrant tissue by use of a filtration column. Plant Mol Biol Report 23:53–58

    Article  Google Scholar 

  71. Powell RF, Pulido Suarez L, Magee AR, Boatwright JS, Kapralov MV, Young AJ Genome size variation and endopolyploidy in the diverse succulent plant family Aizoaceae. Bot J Linn Soc. (in press)

    Google Scholar 

  72. Šmarda P, Bureš P (2010) Understanding intraspecific variation in genome size in plants. Preslia 82:41–61

    Google Scholar 

  73. Loureiro J, Rodriguez E, Doležel J, Santos C (2006) Comparison of four nuclear isolation buffers for plant DNA flow cytometry. Ann Bot 98:679–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Greilhuber J, Temsch EM, Loureiro J (2007) Nuclear DNA content measurement. In: Doležel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells. Wiley-VCH, Weinheim, pp 67–102

    Chapter  Google Scholar 

  75. Hörandl E, Dobes C, Suda J, Vit P, Urfus T, Temsch EM, Cosendai AC, Wagner J, Ladinig U (2011) Apomixis is not prevalent in subnival to nival plants of the European Alps. Ann Bot 108:381–390

    Article  PubMed  PubMed Central  Google Scholar 

  76. Bennett MD, Smith JB (1991) Nuclear DNA amounts in angiosperms. Philos Trans R Soc Lond B Biol Sci 334:309–345

    Article  CAS  Google Scholar 

  77. Doležel J, Sgorbati S, Lucretti S (1992) Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiol Plant 85:625–631

    Article  Google Scholar 

  78. Doležel J, Dolezelova M, Novak FJ (1994) Flow cytometric estimation of nuclear DNA amount in diploid bananas (Musa acuminata and M. balbisiana). Biol Plant 36:351–357

    Article  Google Scholar 

  79. Marie D, Brown SC (1993) A cytometric exercise in plant DNA histograms, with 2C values for 70 species. Biol Cell 78:41–51

    Article  CAS  PubMed  Google Scholar 

  80. Obermayer R, Leitch IJ, Hanson L, Bennett MD (2002) Nuclear DNA C-values in 30 species double the familial representation in pteridophytes. Ann Bot 90:209–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lysák MA, Doležel J (1998) Estimation of nuclear DNA content in Sesleria (Poaceae). Caryologia 52:123–132

    Article  Google Scholar 

  82. Doležel J, Greilhuber J, Lucretti S, Meister A, Lysák MA, Nardi L, Obermayer R (1998) Plant genome size estimation by flow cytometry: inter-laboratory comparison. Ann bot 82(Suppl. A):17–26

    Article  Google Scholar 

  83. Clark J, Hidalgo O, Pellicer J, Liu H, Marquardt J, Robert Y, Christenhusz M, Zhang S, Gibby M, Leitch IJ, Schneiderrs H (2016) Genome evolution of ferns: evidence for relative stasis of genome size across the fern phylogeny. New Phytol 210:1072–1082

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

J. P. benefited from a Ramón y Cajal Fellowship (RYC-2017-2274) funded by the Ministerio de Ciencia, Innovación y Universidades.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaume Pellicer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pellicer, J., Powell, R.F., Leitch, I.J. (2021). The Application of Flow Cytometry for Estimating Genome Size, Ploidy Level Endopolyploidy, and Reproductive Modes in Plants. In: Besse, P. (eds) Molecular Plant Taxonomy. Methods in Molecular Biology, vol 2222. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0997-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0997-2_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0996-5

  • Online ISBN: 978-1-0716-0997-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics