Skip to main content

Zygotic Genome Activation: Critical Prelude to the Most Important Time of Your Life

  • Protocol
  • First Online:
Germline Development in the Zebrafish

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2218))

  • 1183 Accesses

Abstract

Activation of the embryonic genome during development represents a major developmental transition in all species. The history of its exploration began in the 1950s–1960s, when this idea was put forward and proven experimentally by Alexander Neyfakh. He observed the aberrant development of fish embryos upon X-ray irradiation and noted the different developmental outcomes depending on the stage when fertilized eggs were subjected to irradiation. Neyfakh also discriminated a regional difference of X-irradiation between the nucleus and the cytoplasm. By selecting the X-ray dose causing nuclear damage, he determined the beginning of zygotic transcription, which at that time became known as the morphogenetic function of nuclei. His team defined the link of zygotic transcription with the asynchronization of cell division and cell migration, the two other hallmarks, which along with the morphogenetic function (or the zygotic genome activation), are at the core of the mid-blastula transition during development. Within this framework, current studies using maternal mutants and application of modern methods of whole-embryo and single-cell transcriptomics begin to decipher the molecular mechanisms of the mid-blastula transition (or the maternal-zygotic transition).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jukam D, Shariati S, Skotheim J (2017) Zygotic genome activation in vertebrates. Dev Cell 42:316–332. https://doi.org/10.1016/j.devcel.2017.07.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Svoboda P (2018) Mammalian zygotic genome activation. Semin Cell Dev Biol 84:118–126. https://doi.org/10.1016/j.semcdb.2017.12.006

    Article  CAS  PubMed  Google Scholar 

  3. Robbins L (1984) Developmental use of gene products in Drosophila: the maternal zygotic transition. Genetics 108:361–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Robbins L (1980) Maternal zygotic lethal interactions in Drosophila melanogaster: the effects of deficiencies in the Zeste-White region of the X chromosome. Genetics 96:187–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Barnes F, Eyestone W (1990) Early cleavage and maternal zygotic transition in bovine embryos. Theriogenology 33:141–152

    Article  Google Scholar 

  6. Blythe S, Wieschaus E (2015) Coordinating cell cycle remodelling with transcriptional activation at the Drosophila MBT. Curr Top Dev Biol 113:113–148. https://doi.org/10.1016/bs.ctdb.2015.06.002

    Article  CAS  PubMed  Google Scholar 

  7. Harrison M, Eisen M (2015) Transcriptional activation of the zygotic genome in Drosophila. Curr Top Dev Biol 113:85–112. https://doi.org/10.1016/bs.ctdb.2015.07.028

    Article  CAS  PubMed  Google Scholar 

  8. Robertson S, Lin R (2015) The maternal-to-zygotic transition in C. elegans. Curr Top Dev Biol 113:1–42. https://doi.org/10.1016/bs.ctdb.2015.06.001

    Article  CAS  PubMed  Google Scholar 

  9. Tadros W, Lipshitz H (2009) The maternal-to-zygotic transition: a play in two acts. Development 136:3033–3042. https://doi.org/10.1242/dev.033183

    Article  CAS  PubMed  Google Scholar 

  10. Winata C, Korzh V (2018) The translational regulation of maternal mRNAs in time and space. FEBS Lett 592:3007–3023. https://doi.org/10.1002/1873-3468.13183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Winata C, Kondrychyn I, Kumar V et al (2013) Genome-wide analysis of Zic3 stage-specific interaction with distal regulatory elements of developmental genes. PLoS Genet 9:e1003852. https://doi.org/10.1371/journal.pgen.1003852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Winata C, Lapinski M, Pryszcz L et al (2018) Cytoplasmic polyadenylation mediated translational control of maternal mRNAs directs maternal-to-zygotic transition. Development 145:dev159566. https://doi.org/10.1242/dev.159566

    Article  CAS  PubMed  Google Scholar 

  13. Ulitsky I, Shkumatava A, Jan C et al (2012) Extensive alternative polyadenylation during zebrafish development. Genome Res 22:2054–2066. https://doi.org/10.1101/gr.139733.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee M, Bonneau A, Takacs C et al (2013) Nanog, Pou5f1 and SoxB1 activate zygotic gene expression during the maternal-to-zygotic transition. Nature 503:360–364. https://doi.org/10.1038/nature12632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Onichtchouk D, Driever W (2016) Zygotic genome activators, developmental timing, and pluripotency. Curr Top Dev Biol 116:273–297. https://doi.org/10.1016/bs.ctdb.2015.12.004

    Article  CAS  PubMed  Google Scholar 

  16. Veil M, Yampolsky LY, Grüning B et al (2019) Pou5f3, SoxB1, and Nanog remodel chromatin on high nucleosome affinity regions at zygotic genome activation. Genome Res 29:383–395. https://doi.org/10.1101/gr.240572.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Giraldez A, Mishima Y, Rihel J et al (2006) Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312:75–79. https://doi.org/10.1126/science.1122689

    Article  CAS  PubMed  Google Scholar 

  18. Schier A, Giraldez A (2006) MicroRNA function and mechanism: insights from zebra fish. Cold Spring Harb Symp Quant Biol 71:195–203. https://doi.org/10.1101/sqb.2006.71.055

    Article  CAS  PubMed  Google Scholar 

  19. Zhao B, Wang X, Beadell A et al (2017) m(6)A-dependent maternal mRNA clearance facilitates zebrafish maternal-to-zygotic transition. Nature 542:475–478. https://doi.org/10.1038/nature21355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Boveri T (1918) Zwei Fehlerquellen bei merogonien Versuchen und die Entwickslungfahigkeit merogonischer und partiellmerogonischer Seeigelbastarde. Arch Entw Mech Org 44:417–471

    Google Scholar 

  21. Hertwig G (1918) Kreuzungsversuche an amphibien. Arch Microsc Anat 91:reference in Schonmann, 1938

    Google Scholar 

  22. Schonmann W (1938) Der diploide Bastard Tritom palmatus x Salamandra. Roux Arch Entrwickslungbiol 138:345–375

    Article  Google Scholar 

  23. Korovina V. (1939) Geterogennaya gibridizatsiya ryb: Tez. dokl. (Heterogeneous Hybridization of Fish), Leningrad: Leningr. Gos. Univ.

    Google Scholar 

  24. Moore J (1955) Abnormal combinations of nuclear and cytoplasmic systems in frogs and toads. Adv Genet 7:139–182

    Article  CAS  PubMed  Google Scholar 

  25. Roosen-Runge E (1938) On the early development-bipolar differentiation and cleavage of the zebrafish, Brachidanio rerio. Biol Bull 75:119–133

    Article  Google Scholar 

  26. Neyfakh AA (1956) The changes of radiosensitivity in the course of fertilization in the loach, Misgurnus fossilis. Dokl Akad Nauk SSSR 109:943–946

    Google Scholar 

  27. Neyfakh AA (1956) Effect of ionizing radiation on gametes of the loach, Misgurnus fossilis. Dokl Akad Nauk SSSR 111:585–588

    Google Scholar 

  28. Kostomarova A, Neifakh AA (1964) Method of blastoderm separation in loach embryos and possibilities of its application. Zh Obshch Biol 25:386–388

    CAS  PubMed  Google Scholar 

  29. Kostomarova AA (1974) Loach Misgurnus fossilis L. In: Dettlaff TA (ed) Ob’ekty biologii razvitiya (Objects of developmental biology). Moscow, Nauka, pp 308–323

    Google Scholar 

  30. Mangold O, Peters T (1956) Uber die Wirkung Gleicher Rontgendosen auf Verschiedene Stadien der Entwicklung von Triton alpestris. Beitr Path Anat 116:480–498

    Google Scholar 

  31. Sanides F (1956) Die Lethale und Teratogene Wirkung von Rontgenstrahlen auf Ungefurchte Keime und Gastrulen von Triton alpestris in Verschiedenem Milieu. Biol Zbl 75:149–177

    Google Scholar 

  32. Burakova T, Korzh V, Khainovskaya A et al (1988) Small nuclear RNAs increase the life span of enucleated loach embryos. Dokl Akad Nauk SSSR 303:733–735

    CAS  PubMed  Google Scholar 

  33. Belyayeva VN, Pokrovskaya GL (1959) Change in radiosensitivity of the loach egg during early cleavage. Dokl Akad Nauk SSSR 125:632–635

    Google Scholar 

  34. Neyfakh AA (1959) X-ray inactivation of nuclei as a method for studying their function in the early development of fishes. J Embryol Exp Morphol 7:173–192

    CAS  PubMed  Google Scholar 

  35. Neyfakh AA (1961) Comparative radiation investigation into morphogenetic functions of nuclei in development of animals. Zh Obshch Biol 22:42–57

    Google Scholar 

  36. Brenner S, Jacob F, Meselson M (1961) An unstable intermediate carrying information from genes to ribosomes for protein synthesis. Nature 190:576–581

    Article  CAS  PubMed  Google Scholar 

  37. Kafiani CA, Timofeeva MY (1965) The heterogeneity of messenger RNA synthetized at early stages of embryogeny. Dokl Akad Nauk SSSR 164:1183–1186

    PubMed  Google Scholar 

  38. Kafiani CA, Timofeeva MY, Neufakh AA et al (1966) The effect of X-irradiation on the synthesis of messenger RNA at the early stages of loach embryogenesis. Biokhimiia 31:365–371

    CAS  PubMed  Google Scholar 

  39. Kafiani CA, Timofeeva MY, Neufakh AA et al (1969) RNA synthesis in the early embryogenesis of a fish (Misgurnus fossilis). J Embryol Exp Morphol 21:295–308

    CAS  PubMed  Google Scholar 

  40. Bachvarova R, Davidson EH (1966) Nuclear activation at the onset of amphibian gastrulation. J Exp Zool 163:285–295

    Article  Google Scholar 

  41. Bachvarova R, Davidson EH, Allfrey RV et al (1966) Activation of RNA synthesis associated with gastrulation. Proc Natl Acad Sci U S A 55:358–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Neyfakh AA (1971) Steps in realization of genetic information in early development. Curr Top Dev Biol 6:45–77

    Article  CAS  PubMed  Google Scholar 

  43. Neyfakh AA (1964) Radiation investigation of nucleo-cytoplasmic interrelations in morphogenesis and biochemical differentiation. Nature 201:880–884

    Article  CAS  PubMed  Google Scholar 

  44. Neyfakh AA (1974) Nuclear function during early development of remote fish hybrids. Ontogenez:614–622

    Google Scholar 

  45. Neyfakh AA, Rott NN (1958) A study of the ways of realization of injury caused by radiation in fishes at early developmental stages. Dokl Akad Nauk SSSR 119:261–264

    Google Scholar 

  46. Rott NN, Sheveleva GA (1968) Changes in the rate of cell divisions in the course of early development of diploid and haploid loach embryos. J Embryol Exp Morphol 20:141–150

    CAS  PubMed  Google Scholar 

  47. Rott NN (1987) Cell cycles in early development of animals. Nauka, Moscow

    Google Scholar 

  48. Rott NN, Sheveleva GA (1967) Changes in the type of cell divisions in the early stages of development of diploid and haploid loach embryos. Tsitologiia 9:1265–1275

    CAS  PubMed  Google Scholar 

  49. Kostomarova AA, Ignatieva GM (1968) Correlation of processes of kario- and cytotomy during period of synchronous cleavage divisions in loach (Misgurnus fossilis L.). Dokl Acad Nauk SSSR 183:490–492

    CAS  Google Scholar 

  50. Chulitskaya EV (1970) Desynchronization of cell divisions in the course of egg cleavage and an attempt at experimental shift of its onset. J Embryol Exp Morphol 23:359–374

    Google Scholar 

  51. Neyfakh AA, Rott NN (1968) A quantitative approach to the detection of nuclear activity after differential damage to nucleus and cytoplasm in early development. J Embryol Exp Morphol 20:129–140

    CAS  PubMed  Google Scholar 

  52. Signoret J, Lefresne J (1971) Contribution a I’etude de la segmentation de I’oef d’axolotl. I. Definition de la transition blastuleenne. Ann Embryol Morphogen 4:113–123

    Google Scholar 

  53. Gerhart JC (1980) Mechanisms regulating pattern formation in the amphibian egg and early embryo. In: Goldberg RF (ed) Biological regulation and development, vol 2. Plenum, New York, NY, pp 133–315

    Chapter  Google Scholar 

  54. Newport J, Kirschner (1982) A major developmental transition in early Xenopus embryos: I. Characterization and timing of cellular changes at the midblastula stage. Cell 30:675–686

    Article  CAS  PubMed  Google Scholar 

  55. Newport J, Kirschner M (1982) A major developmental transition in early Xenopus embryos: II. Control of the onset of transcription. Cell 30:687–696

    Article  CAS  PubMed  Google Scholar 

  56. Walker C, Streisinger G (1983) Induction of mutations by gamma-rays in pregonial germ cells of zebrafish embryos. Genetics 103:125–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. McGinnis W, Garber RL, Wirz J et al (1984) A homologous protein-coding sequence in Drosophila homeotic genes and its conservation in other metazoans. Cell 37:403–408

    Article  CAS  PubMed  Google Scholar 

  58. Kuroiwa A, Hafen E, Gehring WJ (1984) Cloning and transcriptional analysis of the segmentation gene fushi tarazu of Drosophila. Cell 37:825–831

    Article  CAS  PubMed  Google Scholar 

  59. Thomas KR, Capecchi MR (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51:503–512. https://doi.org/10.1016/0092-8674(87)90646-5

    Article  CAS  PubMed  Google Scholar 

  60. Kageyama T (1977) Motility and locomotion of embryonic cells of the medaka, Oryzias latipes, during early development. Dev Growth Differ 19:103–110

    Article  Google Scholar 

  61. Aizawa K, Shimada A, Naruse K et al (2003) The medaka midblastula transition as revealed by the expression of the paternal genome. Gene Expr Patterns 3:43–47

    Article  CAS  PubMed  Google Scholar 

  62. Trinkaus JP (1992) The midblastula transition, the YSL transition and the onset of gastrulation in Fundulus. Development 116(Suppl):75–80

    Article  Google Scholar 

  63. Trinkaus JP, Erickson CA (1983) Locomotion of Fundulus deep cells during gastrulation. Am Zool 21:401–411

    Article  Google Scholar 

  64. Kane DA, Kimmel CB (1993) The zebrafish midblastula transition. Development 119:447–456

    Article  CAS  PubMed  Google Scholar 

  65. Haffter P, Granato M, Brand M et al (1996) The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123:1–36

    Article  CAS  PubMed  Google Scholar 

  66. Kane DA, Hammerschmidt M, Mullins MC (1996) The zebrafish epiboly mutants. Development 123:47–55

    Article  CAS  PubMed  Google Scholar 

  67. Kane DA, Maischein HM, Brand M (1996) The zebrafish early arrest mutants. Development 123:57–66

    Article  CAS  PubMed  Google Scholar 

  68. Dosch R, Wagner DS, Mintzer KA et al (2004) Maternal control of vertebrate development before the midblastula transition: mutants from the zebrafish I. Dev Cell 6:771–780

    Article  CAS  PubMed  Google Scholar 

  69. Aanes H, Winata CL, Lin CH et al (2011) Zebrafish mRNA sequencing reveals polyadenylation of maternal RNAs as a mechanism regulating gastrulation. Genome Res 21:1328–1338. https://doi.org/10.1101/gr.116012.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mathavan S, Lee S, Mak A et al (2005) Transcriptome analysis of zebrafish embryogenesis using microarrays. PLoS Genet 1:e29. https://doi.org/10.1371/journal.pgen.0010029

    Article  CAS  PubMed Central  Google Scholar 

  71. McKenna A, Findlay GM, Gagnon JA et al (2016) Whole-organism lineage tracing by combinatorial and cumulative genome editing. Science 353:aaf7907. https://doi.org/10.1126/science.aaf7907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Satija R, Farrell JA, Gennert D et al (2015) Spatial reconstruction of single-cell gene expression data. Nat Biotechnol 33:495–502. https://doi.org/10.1038/nbt.3192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. He WX, Wu M, Liu Z et al (2018) Oocyte-specific maternal Slbp2 is required for replication-dependent histone storage and early nuclear cleavage in zebrafish oogenesis and embryogenesis. RNA 24:1738–1748. https://doi.org/10.1261/rna.067090.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kumari P, Gilligan PC, Lim S (2013) An essential role for maternal control of nodal signaling. eLife 2:e00683. https://doi.org/10.7554/eLife.00683

    Article  PubMed  PubMed Central  Google Scholar 

  75. Heyn P, Salmonowicz H, Rodenfels J et al (2017) Activation of transcription enforces the formation of distinct nuclear bodies in zebrafish embryos. RNA Biol 14:752–760. https://doi.org/10.1080/15476286.2016.1255397

    Article  PubMed  Google Scholar 

  76. Bazzini AA, Lee MT, Giraldez AJ (2012) Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Science 336:233–237. https://doi.org/10.1126/science.1215704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Darbo E, Herrmann C, Lecuit T et al (2013) Transcriptional and epigenetic signatures of zygotic genome activation during early Drosophila embryogenesis. BMC Genomics 14:226. https://doi.org/10.1186/1471-2164-14-226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Takacs CM, Giraldez AJ (2010) MicroRNAs as genetic sculptors: fishing for clues. Semin Cell Dev Biol 21:760–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The author was supported by an Opus grant (2016/21/B/NZ3/00354) from the NCN, Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Korzh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Korzh, V. (2021). Zygotic Genome Activation: Critical Prelude to the Most Important Time of Your Life. In: Dosch, R. (eds) Germline Development in the Zebrafish. Methods in Molecular Biology, vol 2218. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0970-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0970-5_25

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0969-9

  • Online ISBN: 978-1-0716-0970-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics